• Title/Summary/Keyword: friction stir weld

Search Result 81, Processing Time 0.025 seconds

THE EVALUATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDEDAL-MG-SI ALLOY

  • Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.499-504
    • /
    • 2002
  • The microstructural change associated with the hardness profile in friction stir welded, age-hardenable 6005 Al alloy had been evaluated. Frictional heat and plastic flow during friction stir welding created the fine recrystallized grain (Stir Zone, SZ), the elongated and recovered grain (Thermo-Mechanical Affected Zone, TMAZ) in the weld zone. Heat affected zone (HAZ), which could be only identified by hardness test because there is no difference in the grain structure compared with that of the base metal, was formed beside the weld zone. A softened region had been formed near the weld zone during friction stir welding process. The softened region was characterized by the dissolution and coarsening of the strengthening precipitate during the friction stir welding. The sound joints of 6005 Al alloys were successfully formed under a wide range of the friction stir welding conditions.

  • PDF

Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

  • Yoon, Byoung-Hyun;Kim, Heung-Ju;Chang, Woong-Seong;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.196-200
    • /
    • 2006
  • For the evaluation of corrosion resistance of Al 6061-T6 alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld.

DISSIMILAR FRICTION-STIR WELDING OF ALALLOY 1050 AND MGALLOY AZ31

  • Park, Seung Hwan C.;Masato Michiuchi;Yutaka S. Sato;Hiroyuki Kokawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.534-538
    • /
    • 2002
  • Dissimilar friction stir welding of aluminum (AI) alloy 1050 and magnesium (Mg) alloy AZ31 was successfully done in the limited welding parameters. The dissimilar weld showed good quality and facility compared to conventional fusion weld. Transverse cross section perpendicular to the welding direction had no defects. The weld was divided into base material of Al alloy, an irregular shaped stir zone and base material of Mg alloy. The irregular shaped stir zone was roughly located around the initial weld center. The weld interface near plate surface shifted from initial weld centerline to the advancing side. Hardness profile of the weld was heterogeneous, and the hardness value of the stir zone was raised to about 150 Hv to 250 Hv. The mixed phase was identified to intermetallic compound $Mg_{17}$Al$_{12}$ using x-ray diffraction method, energy dispersive x-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). The formation of intermetallic compound $Mg_{17}$Al$_{12}$ during FSW causes the remarkable increase in hardness value in the stir zone.one.

  • PDF

Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy (5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

The Effects of Welding Conditions on the Joint Properties of the Friction Stir Welded AZ31B-H24 Mg Alloys (마찰교반용접한 AZ31B-H24 마그네슘 합금의 용접특성에 미치는 용접조건의 영향)

  • 이원배;방극생;연윤모;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.87-92
    • /
    • 2002
  • Weldability of Friction Stir Welded(FSW) AZ31B-H24 Mg alloy sheet with 4m thick was evaluated by changing welding speed. The sound welding conditions mainly depended on the suffiicient welding heat input during the process. The insufficient heat input resulted in the void like defect in the weld zone. Higher welding speed caused a larger inner void or lack of bonding. The defects were distributed at the stir zone or the transition region between stir zone and thermo-mechanical affected zone (UE). The size of defects slightly increased with increasing welding speed. These defects had a great effect on the joint strength of weld zone. The weld zone was composed of stir zone, TMAZ and heat affected zone. The stir zone was cosisted of fine recrystallized structure with $5-8\mu\textrm{m}$ in the mean grain size. The hardness of weld zone was near the 60HV, which was slightly lower than that of base metal. The maximum joint strength was about 219MPa that was 75% of that of base metal and the yield strength was also lower than that of base metal partly due to the existance of defects.

Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys (FSW된 이종알루미늄합금의 접합 특성 및 미세 조직)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Dissimilar joining of aluminum 6061-T6 alloy to aluminum 5083-O alloy was performed using friction-stir welding technique. The mechanical properties, hardness, macro- and micro-structure on dissimilar friction-stir-weld aluminium alloy were investigated. Mechanical properties of the weld mainly depend on which Al alloy is placed at the retreating sides of the rotating tool respectively during dissimilar friction-stir weld because the microstructure of stir zone was mainly composed of welded Al alloys of the retreating side. Onion ring pattern was observed like lamella structure stacked by each Al alloy in turn. It apparently results in defect-free weld zone that traverse speed was changed to 124 mm/min under conditions of tool rotation speed like 1250 rpm with 5 mm of tool's prove diameter, 4.5 mm of prove length, 20 mm of shoulder diameter, and $2^{\circ}$ of tilting angle. The 231 MPa of ultimate stress and the 121 MPa of yield point are obtained about the friction-stir-welded Al 6061-T6(AS) to Al 5083-O(RS).

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy (마찰교반접합된 니켈기 초합금의 기계적 특성)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.410-414
    • /
    • 2011
  • This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.

Bead Shape and Conditions of Friction Stir Processing to Improve Fatigue Strength (피로강도 향상을 위한 표면마찰교반법의 가공조건 및 비드형상)

  • Park, Jeong-Ung;An, Gyu-Baek;Kim, Heung-Ju;Jo, Byeong-Cheol
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.73-79
    • /
    • 2013
  • Burr grinding, Tungsten Inert Gas (TIG) dressing, ultrasonic impact treatment, and peening are used to improve fatigue life in steel structures. These methods improve the fatigue life of weld joints by hardening the weld toe, by improving the bead shape, and by creating the compressive residual stress. In this study, a new post-weld treatment method improving the weld bead shape and metal structure at the welding zone using Friction Stir Processing (FSP), a welding process, is proposed to enhance fatigue life. For that, a pin-shaped tool and processing condition employing Friction Stir Processing (FSP) is established through experiments. Experimental results revealed that fatigue life is improved by around 50% compared to as-welded fatigue specimens by reducing the stress concentration at the weld toe and by generating a metal structure finer than that of flux-cored arc welding (FCAW).

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

Numerical Simulation of friction Stir Spot Welding Process with AA5083-H18 (AA5083-H18 판재의 마찰 교반 점 용접 공정에 대한 전산 해석)

  • Kim, Don-Gun;Badarinarayan, Harsha;Ryu, Ill;Kim, Ji-Hoon;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • Thermo-mechanical simulation of the Friction Stir Spot Welding (FSSW) processes was performed for the AA5083-H18 sheets, utilizing commercial Finite Element Method (FEM) and Finite Volume Method (FVM) which are based on Lagrangian and Eulerian formulations, respectively. The Lagrangian explicit dynamic FEM code, PAM-CRASH, and the Eulerian Computational Fluid Dynamics (CFD) FVM code, STAR-CD, were utilized to understand the effect of pin geometry on weld strength and material flow under the unsteady state condition. Using FVM code, material flow pattern near the tool boundary was analyzed to explain the weld strength difference between the weld by cylindrical pin and the weld by triangular pin, while the frictional energy concept using the FEM code had limitation to explain the weld strength difference.

  • PDF