• Title/Summary/Keyword: friction stability

Search Result 582, Processing Time 0.039 seconds

Development of the formulation and the process of DXD-19 sheet explosive (판상 화약 DXD-19 조성 및 성형 공정개발)

  • Cheun Young Gu;Lee Jin Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.129-139
    • /
    • 2004
  • DXD-19 is a flexible sheet explosive, which is a new polymer-bonded explosives(PBX's). DXD-19 is relatively insensitive and can be extruded into various configurations to be applied to munitions. A typical application includes multi-point initiation for the warhead, cutting/severance devices and transfer lines. The DXD-19 composition employs a binder system derived from the thermoplastic elastomer(HyTemp 4454) containing $5\%$ OH terminated with isocyanate curable for increasing mechanical properties. The use of an elastomer CAB increases its mechanical properties and the use of an energetic plasticizer BDNPF/BDNPA(F/A) improves the process ability as well as energy contents. The composition of the extruded DXD-19 formulation is formed $\%$ weight of $PETN/HyTemp/ATEC/(F/A)/CAB=72\~73/12\~13/6\~7/6\~7/1\~2$. Our safety tests of DXD-19 shows Insensitivity to an impact test and friction test, good thermal stability and excellent mechanical properties.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석)

  • Kim, B;Jung, W;Baek, H;Kang, D;Chung, J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Holding Mechanism of Anchor System for Fisheries Facilities (계류기초의 파주력 산정에 관한 연구)

  • Jung, Jin-Ho;Ryu, Cheong-Ro;Kim, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.132-147
    • /
    • 1996
  • The optimal design of floating type fisheries facilities in the open sea is demanded considering with the severe hydrodynamic forces on floating body, mooring tension and holding force of anchor. For conserving the facilities in most effective state, design and selection of anchor system is one of the most important fundamental subject. To enhance the design procedure of anchor system the holding forces of anchor are investigated by the hydraulic model test and are compared with the typical conventional results for various anchors. Applicability of previous estimation methods of holding force are checked and holding mechanism of anchor is discussed. Using the results a new computational concept of holding force is suggested considering mainly the effects of passive soil pressure (resistance), steady soil pressure, and surface friction etc. The new estimation method is proved as a feasible one by comparing the results of hydraulic model experiments. Applicability of various anchors to the anchor system on open sea fisheries structures is comprehensively reviewed using the present model tests and previous study results in the viewpoint of economy, construction and stability etc. Using the results, fundamental anchoring system design procedures are suggested to apply huge marine ranching complex with increase of the holding capacity of anchor under the optimum cost.

  • PDF

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

Abrasion of abutment screw coated with TiN

  • Jung, Seok-Won;Son, Mee-Kyoung;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.102-106
    • /
    • 2009
  • STATEMENT OF PROBLEM. Screw loosening has been a common complication and still reported frequently. PURPOSE. The purpose of this study was to evaluate abrasion of the implant fixture and TiN coated abutment screw after repeated delivery and removal with universal measuring microscope. MATERIAL AND METHODS. Implant systems used for this study were Osstem and 3i. Seven pairs of implant fixtures, abutments and abutment screws for each system were selected and all the fixtures were perpendicularly mounted in liquid unsaturated poly-esther with dental surveyor. After 20 times of repeated closing and opening test, the evaluation for the change of inner surface of implant and TiN-coated abutment screw, and weight loss were measured. Mann-Whitney test with SPSS statistical software for Window was applied to analyze the measurement of weight loss. RESULTS. TiN-coated abutment screws of Osstem and 3i showed lesser loss of weight than non-coated those of Osstem and 3i (P < .05, Mann-Whitney test). CONCLUSION. Conclusively, TiN coating of abutment screw showed better resistance to abrasion than titanium abutment screw. It was concluded that TiN coating of abutment screw would reduce the loss of preload with good abrasion resistance and low coefficient of friction, and help to maintain screw joint stability.

EFFECT OF TIN COATING OF ABUTMENT SCREW ON DETORQUE FORCE

  • Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • Purpose. The aim of this study is to evaluate the effect of TiN coating of abutment screw on the unscrewing torque. Material and methods. Titanium and Gold-Tite abutment screws were classified into two groups, Group A and C respectively, as control groups. Titanium abutment screws with TiN coatings were also classified into two groups, Group B and D, as experimental ones. Group A and B were tightened to 20 Ncm input torque, and Group C and D were tightened to 32 Ncm torque. Detorque values were measured with digital torque gauge during repeated closing and opening experiment. Results. Abutment screws with TiN coating (Group B and D) showed statistically significant higher mean detorque values than those of Group A and C. Discussion. Physical properties of TiN coating, such as low friction coefficient, high hardness and wear resistance, might contribute to higher detorque values. Conclusion. It is suggested that TiN coating of abutment screw help to reduce the risk of screw loosening and improve the stability of screw joint.

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.