• Title/Summary/Keyword: friction performance test

Search Result 347, Processing Time 0.021 seconds

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Evaluation of a Traffic Noise Predictive Model for an Active Noise Cancellation (ANC) System (능동형 소음저감 기법을 위한 도로교통소음 예측 모형 평가 연구)

  • An, Deok Soon;Mun, Sung Ho;An, Oh Seong;Kim, Do Wan
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS : The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.

Development of Ankle Power Assistive Robot using Pneumatic Muscle (공압근육을 사용한 발목근력보조로봇의 개발)

  • Kim, Chang-Soon;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.771-782
    • /
    • 2017
  • This paper describes the development of a wearable robot to assist ankle power for the elderly. Previously developed wearable robots have generally used motors and gears to assist muscle power during walking. However, the combination of motor and reduction gear is heavy and has limitations on the simultaneous control of stiffness and torque due to the friction of the gear reducer unlike human muscles. Therefore, in this study, Mckibben pneumatic muscle, which is lighter, safer, and more powerful than an electric motor with gear, was used to assist ankle joint. Antagonistic actuation using a pair of pneumatic muscles assisted the power of the soleus muscles and tibialis anterior muscles used for the pitching motion of the ankle joint, and the model parameters of the antagonistic actuator were experimentally derived using a muscle test platform. To recognize the wearer's walking intention, foot load and ankle torque were calculated by measuring the pressure and the center of pressure of the foot using force and linear displacement sensors, and the stiffness and the torque of the pneumatic muscle joint were then controlled by the calculated ankle torque and foot load. Finally, the performance of the developed ankle power assistive robot was experimentally verified by measuring EMG signals during walking experiments on a treadmill.

The effect of plasma treatment to improve adhesion strength of parylene-C coated medical grade SUS304 (Parylene-C 코팅된 의료용 SUS304 소재의 결합력 향상을 위한 플라즈마 처리 효과)

  • Kim, Dong-Guk;Song, Tae-Ha;Jeong, Yong-Hoon;Kang, Kwan-Su;Yoon, Deok-kyu;Kim, Min-Uk;Woo, Young-Jae;Seo, Yo-Han;Kim, Kyung-Ah;Roh, Ji-hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.390-397
    • /
    • 2022
  • Parylene-C which was mainly used for industries such as electronics, machinery and semiconductors has recently been in the spotlight in the medical field due to its properties such as corrosion resistance and biocompatibility. In this study we intend to derive a plan to improve the bonding strength of Parylene-C coating with the SUS304 base material for medical use which can be applied to various medical fields such as needles, micro needles and in vitro diagnostic device sensors. Through plasma pretreatment the bonding strength between Parylene-C and metal materials was improved. It was confirmed that the coated surface was hydrophobic by measuring the contact angle and the improvement of the surface roughness of the sample manufactured through CNC machining was confirmed by measuring the surface roughness with SEM. Through the above results, it is thought that it will be effective in increasing usability and reducing pain in patients by minimizing friction when inserting medical devices and in contact with skin. In addition it can be applied to various application fields such as human implantable stents and catheters, and is expected to improve the performance and lifespan of medical parts.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.