• Title/Summary/Keyword: friction performance test

Search Result 345, Processing Time 0.041 seconds

A Study on the Friction of Tire Tread Rubber using High-Speed Friction Test Machine (고속 마찰 특성 평가시험기 개발을 통한 타이어 트레드 고무의 마찰에 관한 연구)

  • Lee, Jin Koo;Lee, Dong Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.622-628
    • /
    • 2013
  • Due to the development of compounding technology, there is a considerable increase in the number of high performance rubbers in the world. Accordingly, there are rapid growing requests about high performance tires such as UHP tire and Run-flat tire. However, it is extremely difficult to investigate the friction coefficient of tire tread rubbers. An alternative solution must be developed with the reliability of high-speed linear friction test machines. The use of friction test machines can be expected to improve rubber friction researches. In this paper, we propose a new kind of high-speed linear friction test machine. We have designed and manufactured various mechanisms for friction tests. The final goals are to design and manufacture friction test machines that can investigate friction coefficients efficiently and rapidly. The performance of the proposed high-speed linear friction test machine is evaluated experimentally; however additional study should be necessary for safer and more reliable experimentation.

Development of Sintered Friction Material for High Speed Train (고속 전철용 소결 마찰재료 개발)

  • 김기열;김상호;이범주;조정환
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.779-786
    • /
    • 2002
  • The Friction Brake Pad of High Speed Train is the most important parts in brake system, which is usually made of Cu-based Sintered friction material. This study has been carried out about the formulation effects of sintered friction material and made lots of sample brake pads. Then, we have done the performance test of the developed product by using full scale inertia Dynamo-meter. This performance test (braking speed 300km/h) was conducted as GEC Alsthom Standard test procedure and High Speed Brake Test (braking speed 350km/h) was done at "Poli" in Italy. The friction properties of this product was almost identical with the brake pad which is currently used to TGV. And the temperature of brake disk on braking speed 350Km/h was a little higher.

  • PDF

Experimental Study on the Structural Performance of Hybrid Friction Damper (혼합형 마찰댐퍼 구조성능에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.103-110
    • /
    • 2015
  • Various hybrid dampers have been developed as increasing tall buildings in Korea. To minimize the installment space and cost, the new hybrid friction damper was developed using friction components. It is composed of two one-nodal rotary frictional components and a slotted bolted frictional connection. Because of these components, hybrid friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, displacement amplitude dependency tests were carried out to evaluate on the structural performance and the multi-slip mechanism of the hybrid damper. Test results show that the multi-slip mechanism is verified and friction coefficients are increasing as displacement amplitudes are increasing.

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures (구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가)

  • Kim, Sung-Bae;Kwon, Hyung-O;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways (사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구)

  • Cho, Nam-Hyun;Kim, Dong-Chul;Phi, Seung-Woo;Shin, Joong-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.

Effects of Base Oils on Performance of Automatic Transmission Fluid (윤활기유가 자동변속기유의 성능에 미치는 영향)

  • 문우식;양시원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.273-279
    • /
    • 2000
  • Until recently performance requirements for automatic transmission fluids have continued to change to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve the fuel economy and easy driving. To meet recent performance requirements fur automatic transmission the needs for special base oils Bike API Group III and IV base oils become larger. In this paper to evaluate the effects of base oils on performance of automatic transmission fluids formulated with API Group I,II,III and IV and Dexron III and Hereon Type additive package, Brookfield viscosity, oxidation test, SAE No.2 friction test and seal compatibility test were examined. From the test we knew that the use of Croup III and IV base oils in ATF has several benefits in low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

A Evaluation Method of Operational Performance for Air-operated Gate Valve (공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구)

  • Kim, Dae-Woong;Park, Sung-Keun;Kang, Shin-Cheul;Kim, Yang-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.