• Title/Summary/Keyword: friction joint

Search Result 378, Processing Time 0.023 seconds

Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying (기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구)

  • 강지훈
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

Friction Welding Optimization of Hot Die Punch Materials and Its AE Evaluation (열간 금형재의 마찰용접 최적화와 AE평가)

  • Oh, S.K.;Kong, Y.S.;Park, I.D.;Yoo, I.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.54-58
    • /
    • 2000
  • The complete joining method for dissimilar hot die punch materials and its real-time evaluation method are not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. So, this work was carried out to determine the optimal friction welding conditions and to analyze mechanical properties of friction welded joints of hot die punch materials (STD61 for the blade part of hot die punch) to alloy steel (SCM440 for the shank part of hot die punch) such as plunger. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

A Study on Fatigue Characteristics of Dissimilar Spring Steel(SUP9A)-SM25C by Friction Welding (스프링강(SUP9A)-SM25C의 이종재 마찰용접 피로특성에 관한 연구)

  • 정석주;이기중
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • The friction-welding SM25C is a substitute for the suing steel that is utilized in the machinery, airplane, and automobile, ok. This substitution would provide reduction of material and weight of welding parts. From the result we found that the strength of the friction welded joint was 529-617MPa and the toughness 1.2 times higher than that of the base metal. The optimal condition of friction welding was found as follows : n=2000rpm, $P_1$=68㎫, $P_2$=137MPa, $t_2$=2sec, $t_1$=2-4sec, Considering the strength, the hardness, and the reduction of area in the friction welding, the fiction welding using SUP9A and SM25C was found to cause no problem in on-the-job application.

  • PDF

A Survey for Some Asbestos Containing Products in Korea (우리나라 일부 석면 함유제품에 대한 실태조사)

  • Ki, Yun-Ho;Kim, Jung-Man;Roh, Young-Man;Chung, Lucia;Kim, Yoon-Shin;Sim, Sang-Hyo
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.108-115
    • /
    • 2008
  • This study was performed to investigate the current status, in Korea, of the production of asbestos containing products (ACPs) such as asbestos cement products, asbestos friction materials, asbestos joint sheets, asbestos textile products, and other asbestos-containing products from May 2 to July 30, 2007. The information on ACPs was obtained through written questionnaires from 16 of the 27 companies that produce ACPs in Korea. The production amounts of asbestos containing gaskets were 70 tons in 2004, 90 tons in 2005, and 55 tons in 2006 in 4 companies and that of asbestos friction materials were 435.5 tons in 2004, 540.4 tons in 2005, and 454.3s ton in 2006 in 10 companies. The type and number of ACPs were:- 19 asbestos cement products, produced by 2 companies; 47 asbestos friction materials produced by 18 companies; 12 asbestos joint sheets productes by 4 companies; 18 asbestos textile products from 3 companies, and 6 other asbestos products from 5 companies. The database of ACPs was constructed to include the products name, identification number, name of company, production year, composition, asbestos content (%), usage, specification, and a picture. The database will be used to efficiently identify ACPs and to avoid asbestos exposure in workers and the general population.

Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array (직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성)

  • Kang, Dae-Min;Park, Kyoung-Do;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

Dissimilar Friction Stir Welding Characteristics of Mg Alloys(AZ31 and AZ61) (AZ31와 AZ61 마그네슘 합금의 이종 마찰교반용접 특성)

  • Park, Kyoung Do;Lee, Hae Jin;Lee, Dai Yeol;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.99-104
    • /
    • 2017
  • Friction stir welding is a solid-state joining process and is useful for joining dissimilar metal sheets. In this study, the experimental conditions of the friction stir welding were determined by the two-way factorial design to evaluate the characteristics of the dissimilar friction stir welding of AZ31 and AZ61 magnesium alloys. The levels of rotation speed and welding speed, which are welding variables, were 1000, 2000, 3000 rpm and 100, 200, 300 mm/min, respectively. From the results, the greater the rotation speed and the lower the welding speed of the tool were, the greater the tensile strength of the welded part was. The contribution of the welding speed of the tool is larger than that of the rotation speed of the tool. In addition, the optimal conditions for tensile strength in the dissimilar friction stir joint were predicted to be the rotation speed of 3000 rpm and welding speed of 100 mm/min, and the tensile strength under the optimal conditions was estimated to be $214{\pm}6.57Mpa$ with 99% reliability.

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys (마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향)

  • No, Kookil;Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

Trajectory planning for redundant robot by joint disturbance torque minimization (여유자유도 로봇의 관절외란최소화를 이용한 궤적계획)

  • 최명환;최병진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1581-1584
    • /
    • 1997
  • This paper poropsed an efficient optimization technuque to resolve redundancy and a trajectory planning for a high precision control using proposed optimization technique. The proposed techniqus is the joint disturbance torque optimizatioin considering redundancy in the joing servo control. Joint disturbance torque is not unknown it is described dynamic equation ignored friction and viscosity. The proposed technique is used the dynamic equatiion included the joint disturbance torque characteristics. Numerical example of 3 joint planar redundant robot manipulator is simulated. In the 2-norm minimization of joint disturbance torque we compared pseudoinverse local optimization with proposed technique, and the results showed better the proposed technique. So the proposed technique can be highly precision controlled redundant robot manipulators in the joint servo control.

  • PDF

Evaluation and Process Analysis of the Superalloy Friction Welding for Large Shaft (초내열합금의 대형마찰용접 공정해석 및 평가)

  • Jeong H. S.;Kim Y. H.;Cho J. R.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.301-304
    • /
    • 2004
  • Friction welding was used to weld the turbine wheel and shaft and have a good welding quality. Friction welding was conducted an the two dissimilar material, Nimonic 80A and SNCrW. The control of friction welding process parameter such as flywheel energy, interface temperature, amount of upset have an effect on the mechanical properties of the welded joint. FE simulation can be a useful tool to optimize the weld geometry and process parameters. Flash shape and thickness weld is consistent with the simulated results. Process analysis was performed by the commercial code DEFORM 2D. Mechanical property of weld joints was evaluated by microstructure, chemical component, tensile, impact, hardness test so on.

  • PDF