• Title/Summary/Keyword: friction heat

Search Result 947, Processing Time 0.03 seconds

Wear Behaviors of Ceramics TIN, TIC and TICN with Arc Ion Plating

  • Oh, Seong-Mo;Rhee, Bong-Goo;Jeong, Bong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1904-1911
    • /
    • 2003
  • In order to determine the wear properties of AIP (Arc Ion Plating) deposition, wear process was evaluated by using a Falex test machine. Also, in order to determine the effects of coating material on the wear process, TiC, TiN, and TiCN coatings of thickness about 5 $\mu\textrm{m}$∼6 $\mu\textrm{m}$ coated by Arc ion plating deposition method were tested. The wear property was determined under a dry sliding condition as a function of the applied load, sliding distance, sliding velocity and temperature. The results show that when wear of the coating-layer occurred, specific wear amount increased with the wear rate. At initial state, the wear rate rapidly increased, but it gradually reduced as the velocity increased. Also, when raising the temperature, the wear rate increased in the order of TiCN, TiN and TiC due to the frictional heat.

Performance Analysis of the Refrigerant oil separator with a build-in heater (가열기가 내장된 냉매오일 분리기의 성능 고찰)

  • Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • Refrigerant oil reduces friction between piston and cylinder of compressor and is normally hard to mix or dissolve in refrigerant. Oil separator deprives refrigerating oil from mixed solution of refrigerant and refrigerant oil. Sometimes much machine oil is carried into an evaporator and is applied to surface of the evaporator, and then disturbs heat transfer through it. Well-made oil separator helps refrigerating system stable and evaporator sustain full capacity. In this paper, new oil separate with different way to structure is suggested and tested. As result the new separates is 13% higher at 0C with 10% mixture and 6% higher at 0C with 20% mixture.

Finite Element Analysis of Multistage Hot Forging Process During Mold Cooling (금형 냉각을 고려한 다단 열간 단조 공정의 유한요소해석)

  • Choi, Du-Soon;Kang, Hyoungboo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.75-81
    • /
    • 2020
  • Multistage hot forging process enables mass production of various parts at a high speed, wherein, it is important to design the forging steps in an optimal way. Finite element methods are widely applied for optimizing the forging process design; however, they present inaccurate results due to the rapid change in the mold temperature during multistage hot forging. In this study, the temperature distributions of the mold in a steady state were calculated via heat transfer analysis during mold cooling. The flow stress and friction coefficient of the material were measured according to the temperature and were applied for numerical analysis of the multistage hot forging process. Eventually, the accuracy of the analysis results is verified by comparing these results with the experiments.

A Study on the Gas Wave Propagation in the Pipe by Numerical analysis (수치해석에 의한 파이프에서의 가스파동전하에 관한 연구)

  • 김명균
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.154-160
    • /
    • 1998
  • This study describes a theoretical and experimental investigation of gas wave propagation in the pipe system. Most calculations of compressible flows in the pipe have been based on the method of characteristics. This technique has propensity to truncate waves and is difficult to apply to non-perfect gas. A method that describes the application of a two-step Lax-Wendroff acheme to solution of the unsteady one-dimentional flow in the pipe was developed. Theoretical calculations using both the method of characteristics and the two-step Lax-Wendroff method are presented including a realistic model for heat transfer and friction processes. In the present work, account is taken of the nonlinear behavior. For sections of parallel pipe, an one dimensional unsteady homentropic analysis is employed, and a numerical solution is obtained with the aid of a digital computer, using the method of characteristics and two-step Lax-Wendroff method. This analysis is then combined with boundary models, based on a quasi-steady flow approach, to give a complete treatment of the flow behavior in the pipe system.

  • PDF

Numerical Analysis of an Orifice Pulse Tube Refrigerator (오리피스 맥동관 냉동기의 수치적 해석)

  • Lee, K.S.;Jeong, E.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 1994
  • A numerical model for the analysis and design of orifice pulse tube refrigerators has been developed. Heat transfer coefficient and friction factors in the model vary with time, and the real physical properties such as thermal conductivity and viscosity were used to improve the accuracy of the model. Thermodynamic behavior of the working fluid within pulse tube refrigerators was investigated and the effect of design parameters, such as reservoir volume, orifice diameter, and NTU of regenerator, on the cooling load and COP was shown.

  • PDF

Numerical Simulation of Plate Finned-Tubes Condenser (평판휜-관 응축기의 수치 시뮬레이션)

  • Min, M.S.;Choi, S.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.193-205
    • /
    • 1994
  • A simulation program of the plate finned-tubes condenser widely used in the air conditioning system was developed. The program took into account the variations of the flow properties and fluid friction factor of refrigerant, and the heat transfer coefficients of refrigerant and air sides. The program was applied to a copper tube condenser which has outside diameter of 10.05mm, inside diameter of 9.35mm, length of 5.20m and three rows arraied staggered. Simulation results were such that refrigerant was super-heated state from the entrance to the 0.14m point, two-phase flow from the 0.14m point to the 4.10m point, sub-cooled state from the 4.10m point to the outlet. The degree of sub-cooled was $6.1^{\circ}C$. The variations of refrigerant quality, temperature, pressure, velocity, specific enthalpy, specific volume and air temperature, tube temperature were showed.

  • PDF

A Study on the Optimized Pump Selection of the Cooling System for the PEFP DTL Accelerator (PEFP DTL 냉각시스템의 펌프 선정 최적화에 관한 연구)

  • Park, Jun;Kim, Kyung-Ryul;Kim, Hyung-Gyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1277-1282
    • /
    • 2009
  • The main objective of this prototype is to control resonance frequency of DTL system through the temperature control of cooling water. It is to resonant frequency of the drift tube cavities to 350 MHz. This paper describes the design of a prototype cooling water skid required for the temperature control of the DTL cavities, focusing in the modeling and simulation of the cooling system, the sizing of water pumping skid component.

  • PDF

Analysis and Measurement of Rough Surface Temperature Rise in Lubricated Condition (거친 표면의 마찰온도 해석 및 온도측정 실험에 관한 연구)

  • Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.56-60
    • /
    • 2007
  • The main object of this study is to compare the results that have been concluded by the experiment and to estimate the temperature rise that can cause the contacting surface to be damaged. The former studies are based on the Blok and Jaeger formula. By these formulas we assume that two of the contacted objects are a kind of semi-infinite solid and with this assumption we can make a temperature analysis. But this method doesn't consider lubrication conditions and the calculation time requires a lot of time in that we have to face many difficulties in measuring the actual temperature rise. In this study we combines the semi-infinite solid method and the finite volume method to analyze the temperature of the contacting surface. And we measure temperature rise of the contact surface by dynamic thermocouple.

An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels (열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰)

  • Lee, Sang-Jun;Yoo, Ui-Kyung;Lee, Young-Seog;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments (SKD11의 2차원 절삭실험을 통한 절삭 특성 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF