• 제목/요약/키워드: friction forces

검색결과 492건 처리시간 0.025초

Shear Process and Frictional Characteristics in Down-end Milling

  • Lee, Young-Moon;Jang, Seung-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.19-24
    • /
    • 2003
  • In end milling process, which is characterized by the use of a rotating tool, the undeformed chip thickness varies periodically with phase change of the tool. Although many efforts have concentrated on the study of end milling process, the analysis of shear and chip-tool friction behaviors has not been reported. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process are replaced with the equivalent ones of oblique cutting. Then it is possible to simulate the shear and the chip-tool friction characteristics of a down-end milling process. The proposed model has been verified through two sets of cutting tests i.e., down-end milling and the equivalent oblique cutting tests. The experimental results show that the proposed model is suitable to analyze the shear and chip-tool frictional characteristics of down-end milling process. The specific cutting energy decreases with increase in equivalent undeformed chip thickness in a down-end milling process.

서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구 (Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces)

  • 한지희;한규범;장동영;안효석
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

구형 및 평면 원자현미경 탐침에 대한 2차원 소재의 마찰 특성 (Frictional Properties of Two-dimensional Materials against Spherical and Flat AFM Tips)

  • ;정구현
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.199-205
    • /
    • 2019
  • Two-dimensional materials such as graphene, h-BN, and $MoS_2$ have attracted increased interest as solid lubricant and protective coating layer for nanoscale devices owing to their superior mechanical properties and low friction characteristics. In this work, the frictional properties of single-layer graphene, h-BN, and $MoS_2$ are experimentally investigated under various normal forces using atomic force microscope (AFM) tips with a spherical and flat end, with the aim to gain a better understanding of frictional behaviors. The nonlinear relationship between friction and normal force friction was clearly observed for single-layer graphene, h-BN, $MoS_2$ specimens slid against the spherical and flat AFM tips. The results also indicate that single-layer graphene, h-BN, $MoS_2$ exhibit low frictional properties (e.g., friction coefficient below 0.1 under 70~100 nN normal force). In particular, graphene is found to be superior to h-BN and $MoS_2$ in terms of frictional properties. However, the friction of single-layer graphene, h-BN, $MoS_2$ against the flat tip is larger than that against the spherical tip, which may be attributed to the relatively large adhesion. Furthermore, it is shown that the fluctuation of friction is more significant for the flat tip than the spherical tip. The resutls of this study may be helpful to elucidate the feasibility of using two-dimensional materials as solid lubricant and protective coating layer for nanoscale devices.

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • 제26권4호
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가 (Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum)

  • 김태곤;김남균;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

특정형상의 인공자갈이 혼합된 도상자갈층의 지지성능과 응력전달특성 (Economic Evaluation on Geosynthetic Reinforced Abutment for Railways)

  • 김대상
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.15-20
    • /
    • 2019
  • 본 연구에서는 교대에 작용하는 수평력을 저감시키는 총 11 케이스의 설계에 대한 건설비 분석을 실시하였다. 역T형 교대의 뒤채움재 개선과 토목섬유 보강재를 이용하여 교대를 보강한 철도용 보강 교대(Reinforced Abutment for Railways) 적용을 고려한 2종류의 교대 형식에 대하여 검토하였다. 첫 번째 종류의 경제성 분석에서는 역T형 교대의 배면 뒤채움 재료의 내부 마찰각을 35°에서 40°와 50°로 증가시키는 케이스를, 두 번째 종류의 경제성 분석에서는 토목섬유를 적용한 철도용 보강 교대 설계 케이스에 대한 경제성을 비교 분석하였다. 뒤채움 재료의 개선을 통해 내부 마찰각을 40° 혹은 50°로 적용할 때 교대에 가해지는 수평토압은 하중 조건에 따라 18~48% 까지 감소하였으나 교대 건설 비용 저감효과는 2.0~3.9%로 크지 않았다. 그러나, 철도 교대 구조로서 토목섬유 보강 교대를 적용한 결과 교대에 작용하는 수평력을 이론적으로 0까지 저감시킬 수 있어 교대 벽체 두께, 저판 길이 및 말뚝 기초의 수 및 재질 변경으로 최대 30%까지 건설비 저감 효과가 있는 것으로 검토되었다.

시간경과에 따른 교정용 bracket과 교정선 사이의 마찰력 변화에 관한 연구 (A STUDY ON THE CHANCES OF FRICTIONAL FORCE BETWEEN BRACKET AND ORTHODONTIC WIRE WITH TIME IN ARTIFICIAL SALIVA)

  • 곽춘;김진범;손우성
    • 대한치과교정학회지
    • /
    • 제23권2호
    • /
    • pp.283-294
    • /
    • 1993
  • The friction of orthodontic appliances is recogonized to be detrimental to tooth movement. The purpose of this study was to determine the magnitude of frictional force changes between bracket$(018'\times025'\;solt)$ and orthodontic wires(stainless steel, cobalt-chromium, and $\beta-titanium$, $017'\times0.25'$ rectangular) with time. The wire was secured in the bracket slot with a elastomeric ligature. Frictional forces were measured by universal testing machine. The following conclusions were obtained. 1. The frictional forces under dry condition were greater than those in saliva. 2. The frictional forces produced by cobalt-chromium wire were less than those generated by stainless steel and $\beta-titanium$ wire. 3. The frictional forces increased progressively with time, and the amount of increase on first two weeks was greater than on last two weeks. 4. The change of frictional force under dry condition was greater than in artificial saliva.

  • PDF

열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향 (The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films)

  • 김광섭;안등태구;김경웅
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

DDPO$_{4}$$ODPO_{4}$ SAM 코팅의 나노 응착 및 마찰 특성 연구 (Nano adhesion and Friction of $DDPO_{4}$ and $ODPO_{4}$ SAM coatings)

  • 윤의성;양승호;공호성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.207-214
    • /
    • 2002
  • Nano adhesion between SPM (scanning probe microscope) tips and $DDPO_{4}$ (dodecylphosphoric acid ester) and $ODPO_{4}$ (octadecylphosphoric acid ester) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. $DDPO_{4}$ and $ODPO_{4}$ SAM were formed on TiMe and TiOx surfaces. TiMe and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of $DDPO_{4}$ and $ODPO_{4}$ SAM surfaces were compared with those of OTS (octadecyltrichlorosilane) SAM and DLC surfaces. $DDPO_{4}$ and $ODPO_{4}$ SAM converted the TiMe and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic. Results also showed that tribological characteristics of $DDPO_{4}$ and $ODPO_{4}$ had good properties in the adhesion, friction, wetting angle and work of adhesion. $DDPO_{4}$ and $ODPO_{4}$ SAM could be one of the candidates for the bio-MEMS elements.

  • PDF