• 제목/요약/키워드: friction drive

검색결과 215건 처리시간 0.024초

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

조미동 구동기의 반복추종제어에 관한 연구 (A Study on Repetitive Tracking Control of a Coarse-Fine Actuator)

  • 최기상;오종현;최기흥
    • 전자공학회논문지T
    • /
    • 제36T권4호
    • /
    • pp.38-46
    • /
    • 1999
  • 본 논문에서는 조미동 구동기의 반복추종제어에 관하여 논의한다. 제안되는 시스템은 조동구동기로 선형 자기드라이브를, 미동구동기로 선형 압전구동기를 사용하여 구성된다. 특히, 선형 자기드라이브에 내재된 비선형 마찰과 선형 압전구동기의 이력현상이 먼저 모델링되고 되먹임선형화 루프가 이들을 추종제어에 사용한다. 주기적인 입력신호를 추종하는 경우 이를 더욱 확장하려 반복제어 알고리즘을 포함하도록 제어기를 설계한다. 즉, 반복제어기는 되먹임선형화가 적용된 PID 제어기에 설치된다. 실험결과에 의하면 정현파 입력을 추종하는 경우 PID 제어기에 되먹임선형화와 반복제어기를 함께 적용함으로써 추종성능을 크게 향상시킬 수 있는 것으로 나타났다.

  • PDF

고속 HMC 이송계의 운동 특성 평가 (Performance Assessment of Linear Motor for High Speed Machining Center)

  • 홍원표;강은구;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

자동피킹 시스템 구동용 선형 유도 모터 드라이브 설계 및 적분형 가변구조 제어 기반의 강인 위치 제어기 설계 (Design of Linear Induction Machine Drive and Robust Position Controller based on Integral Variable Structure Scheme for Automatic Picking System)

  • 최정현;유동상;김경화
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.511-518
    • /
    • 2013
  • 고 정밀도와 고 속응성의 물류 이송을 위한 자동피킹 시스템 (Automatic Picking System; APS) 구동용 선형 유도 모터 드라이브의 설계 및 강인한 위치 제어 기법이 제안된다. 모델 불확실성에 대한 강인한 위치 제어기 설계를 위해서 적분형 가변구조 제어 기법이 고려된다. APS의 외란추력, 질량 및 마찰계수 등의 기계적 파라미터 변화는 위치 제어 성능에 직접적 영향을 주며 이러한 불확실성 하에서도 강인한 위치 응답 성능을 보유하는 위치 제어기가 설계된다. 선형 유도 모터의 모델을 위한 Simulink 라이브러리가 상태방정식으로부터 개발되며 이를 활용한 Matlab - Simulink 기반의 비교 시뮬레이션을 통해 제안된 방식이 강인한 위치 응답 성능을 가지며 고 정밀도와 고 속응성을 요구하는 APS에 적합함이 입증된다.

CD-ROM 구동 시 발생소음 분석 및 저감 방안에 관한 연구 (A Study of Acoustic Noise Analysis and Reduction Method for Driving CD-ROM)

  • 이재승;차성운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.904-907
    • /
    • 2002
  • Optical disk drive device is improved in rotating speed for faster data reading. In the case of CD-ROM, rotating speed is over 10000 rpm in the practical use. As a result of high rotating speed, unexpected effects as like increasing disk fluctuation and acoustic noise are raised by the air friction on the rotating disk and the eccentricity of rotating parts. The overall acoustic noise of running CD-ROM could be classified into two different characterized noise. The first is the structural-borne noise which is generated from vibrating solid body. By the reason, the signal of structural borne noise has very similar to the signal of surface vibrating one. It has dense noise energy at specific frequency region. The other is the air-borne noise which is generated from turbulence or vortex caused by friction between disk and air. The signal of air-borne noise has no dominant peak point at acoustic pressure-frequency domain. The noise energy is widely distributed while comparatively high and large frequency region. The structural-borne noise could be reduced by reducing vibration of structure and in addition it's target reducing frequency is narrow. However the air-borne noise reduction is effectively needed of enclosing method for the noise source located near the disk surface because it is difficult to define target frequency point. In this study, the acoustic noise at driving CD-ROM is classified by the sides of it's character and tried to reduce the overall acoustic noise.

  • PDF

EHA 펌프용 피스톤 슈 정압베어링의 경계 마찰 성능 개선 (Performance Improvement of the Hydrostatic Piston Shoe Bearing of an EHA-Piston Pump under Boundary Friction Conditions)

  • 홍예선;권용철;김종혁;이성렬;김병곤;문진삼;김재환
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권2호
    • /
    • pp.30-35
    • /
    • 2014
  • The pumps of electro-hydrostatic actuators operate most frequently in boundary lubrication speed range, as they compensate for the position control errors as a control element. When conventional swash plate type piston pumps are applied to electro-hydrostatic actuators, the frictional power losses as well as the wear rate of sliding components, such as piston shoes can increase drastically under the boundary friction condition. In this paper, the power losses of the piston shoes were investigated which were engendered by a frictional solid-to-solid contact and leakage flow rate of their hydrostatic bearing. In order to reduce them, DLC-coating was applied to the swash plate and the ball joint of pistons along with its effects were demonstrated. In addition, it was also shown that the wear rate of the piston shoes could be markedly reduced using the DLC-coated swash plate.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계 (A HDD Latch Design Using Electro-magnetic Force of VCM Actuators)

  • 김경호;오동호;신부현;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

수동형 자기 베어링과 유체 동압 저널베어링을 이용한 HDD용 스핀들 모터 개발 (Development of a HDD Spindle Motor Using Passive Magnet Bearing and Fluid Dynamic Journal Bearing)

  • 이청일;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.473-477
    • /
    • 2005
  • This paper presents a highly efficient HDD (Hard Disk Drive) spindle motor with a passive magnetic thrust bearing and a fluid dynamic journal bearing and its effectiveness is verified through experiment. It eliminates the mechanical friction loss of a thrust bearing which is around 18% of total power consumption of a 3.5' HDD spindle motor, by replacing a conventional fluid dynamic thrust bearing with a passive magnetic thrust bearing. The passive magnetic thrust bearing using permanent magnets is inherently unstable in radial direction. However, the radial fluid dynamic force of the fluid dynamic journal bearing counterbalances the radial magnetic force of magnetic thrust bearing to achieve the stability as the motor spins up. It has less or equivalent runout and less flying height than the conventional spindle motor.

  • PDF