• 제목/요약/키워드: friction damping

검색결과 264건 처리시간 0.022초

MR감쇠기가 설치된 구조물의 등가선형 시스템에 대한 가진 특성의 영향 (Effects of excitation characteristics on the equivalent linear system of a building structure with MR dampers)

  • 박지훈;민경원;문병욱;박은천
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.503-510
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with an MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with an MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed.

  • PDF

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.

Dry friction losses in axially loaded cables

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.330-344
    • /
    • 1996
  • A model of a cable comprising interacting wires with dry friction forces at the interfaces is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading, unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in an explicit form. It is shown that losses are proportional to the third power of the amplitude of the oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear, whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numerical results illustrating the effect of cable parameters on the losses are given.

마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석 (Transonic Aeroelastic Analysis of a Airfoil with Friction Damping)

  • 유재한;이인
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1075-1080
    • /
    • 2010
  • 마찰 감쇠가 있는 공탄성 해석을 위하여, 연계 시간 적분법을 사용하여 아음속/천음속 영역에서 공탄성 응답을 구하였다. 양력면에 발생하는 충격파에 의한 공기역학적 비선형성을 고려하기 위하여 동위상 주기 경계 조건이 적용된 미소교란 방정식을 비정상 공기력 계산에 적용하였다. 변위 종속적인 마찰 감쇠기가 있는 2차원 에어포일 시스템에 대하여 플러터 경계에 대한 수직력의 기울기와 마하수의 영향을 살펴보았다.

지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비 (Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper)

  • 박지훈;문병욱;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.