• Title/Summary/Keyword: friction damper

Search Result 194, Processing Time 0.026 seconds

Forced Response Analyses of a Bladed Disk with Friction Dampers (마찰감쇠기가 있는 블레이드디스크의 강제진동해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • To reduce the vibration levels, additional dissipation elements such as dry friction dampers are sometimes integrated into bladed disk assembly. In this study, forced response analysis systems for a tuned bladed disk with friction dampers were developed and verified. For the efficient nonlinear vibration analysis, multi-harmonic balanced method and cyclic boundary condition were used. Also, mode shapes obtained using fictitious mass method were used to describe the motion of the structures with the concentrated structural nonlinearity, friction damper. The relative convergence of fictitious mass and traditional unconstrained modes were compared.

Nonlinear control of a 20-story steel building with active piezoelectric friction dampers

  • Chen, Chaoqiang;Chen, Genda
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.21-38
    • /
    • 2002
  • A control algorithm combining viscous and non-linear Reid damping mechanisms has been recently proposed by the authors to command active friction dampers. In this paper, friction dampers and the proposed algorithm are applied to control the seismic responses of a nonlinear 20-story building. Piezoelectric stack actuators are used to implement the control algorithm. The capacity of each damper is determined by the practical size of piezoelectric actuators and the availability of power supply. The saturation effect of the actuators on the building responses is investigated. To minimize the peak story drift ratio or floor acceleration of the building structure, a practical sequential procedure is developed to sub-optimally place the dampers on various floors. The effectiveness of active friction dampers and the efficiency of the proposed sequential procedure are verified by subjecting the building structure to four earthquakes of various intensities. The performance of 80 dampers and 137 dampers installed on the structure is evaluated according to 5 criteria. Numerical simulations indicated that the proposed control algorithm effectively reduces the seismic responses of the uncontrolled 20-story building, such as inelastic deformation. The sub-optimal placement of dampers based on peak acceleration outperforms that based on peak drift ratio for structures subjected to near-fault ground motions. Saturation of piezoelectric actuators has adverse effect on floor acceleration.

Vibration Attenuation of a Drum-Typed Washing Machine Using Magneto-Rheological Dampers (MR 댐퍼를 사용한 드럼세탁기의 진동완화)

  • Cha, Sang-Tae;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Most washing machines are now produced as a drum-type, where a washing drum mounted on a suspension system with springs and dampers, to minimize the transmittance of the vibration from the drum to the frame. A low-cost MR damper, using magneto-rheological fluids, can produce variable damping forces by changing the current values in the magnetic coil. Experimental results show the comparison of the vibration attenuation performances between two different dampers. One test set-up uses a passive damper and another one uses a MR fluid damper. The test results showed that the vibration amplitude of the washing machine with the MR damper is much smaller than the case with the passive damper.

Performance Based Design of Friction Dampers for Seismically Excited Structures (지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계)

  • 민경원;김형섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.17-24
    • /
    • 2003
  • The main objective of this paper is to evaluate the control performance of a coulomb friction damper(CFD) for controlling the inelastic behavior of seismically excited structures, The seismic performances of various buildings are evaluated using capacity spectrum method(CSM), and the additional dampings are calculated If the evaluated performance levels of the buildings are below the target level. Maximum friction force of the CFD to achieve additional damping is provided using the concept of equivalent viscous damping, Numerical simulations for single degree of freedom(SDOF) systems with various structural periods and post yield stiffness ratios demonstrate the effectiveness of the proposed procedure.

Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers (다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험)

  • Roh, Ji Eun;Heo, Seok Jae;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Characteristics of Friction Factor for Artificially Roughened Surfaces (임의로 거칠게 한 표면의 점성 마찰특성)

  • Ha, Tae-Woong;Ju, Young-Chan;Lee, Yong-Bok;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.15-20
    • /
    • 2003
  • For measuring friction factor of artificially-roughened surfaces which are usually applied to damper seals, flat plate test apparatus is designed and fabricated. The measurements of leakage flow and pressure distribution through round-hole patterned specimen with different hole areas are described, and a method is discussed for determining the friction factor experimentally. Results show that the friction factor of the round-hole patterned surface is bigger than that of smooth surface, and increases as increasing the hole area. A empirical friction factor model for the round-hole patterned surface can be descrived by the Moody's friction factor formula.