• Title/Summary/Keyword: friction brake

Search Result 340, Processing Time 0.034 seconds

Design and Manufacture of Rope Brake for Elevator (엘리베이터용 로프 브레이크의 설계 및 제작)

  • 이종선;김정훈
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • This paper is purpose to the design and manufacture of rope brake for elevator. In generally, rope brake systems are second safety device for elevator. Therefore rope brake systems are very important device and very difficult device of design and manufacture. Also, this paper is object to reduced process order and process error.

  • PDF

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF

Thermal Behavior of Automotive Ventilated Disk Brake (자동차 디스크 브레이크의 방열성능에 관한 연구)

  • 김진택;백병준
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.186-192
    • /
    • 2000
  • The heat generated in contact type braking system can cause an unacceptable braking performance. Thermal behavior of ventilated disk brake system is presented in this paper. The temperature and velocity fields of 3-D unsteady simulated model are obtained using a software package "FLUENT". The numerical results show that there exits a temperature nonuniformity between the disk faces contacting with pads. The conduction rate through the disk and pad is calculated and the effect of material conductivity is also investigated.estigated.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

Development of Brake Disk Materials with Ni-Cr-Mo (Ni-Cr-Mo계 제동디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.188-194
    • /
    • 2008
  • Brake disks for rolling stock are exposed to thermal fatigue during braking, and thermal cracks occur on surface of disks. Thermal cracks can cause serious accidents, deterioration of braking performance and increase of maintenance cost due to frequent exchange of friction materials. In this study, candidate materials with high-heat resistance were selected by searching the literature. By using cast specimens made of the candidate materials, chemical composition, crystal structure and graphite type were analyzed. In addition, friction coefficient and wear were measured and compared with values for the disk material in service. As a result, it was shown that the NiCrMo has highest tensile strength and lowest friction coefficient and the disk material in service has the most stable friction characteristics.

Tribological Properties of Heat-resistant Cast Steel Discs: Effect of Thermal Conductivity (내열 주강 디스크의 마찰특성: 열전도도 영향)

  • Kim, H.S.;Lee, J.S.;Cho, D.H.;Kang, S.W.;Na, T.Y.;Jang, H.
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • The temperature-dependent tribological properties of brake discs for a train were examined in this study. The discs were produced using heat-resistant alloy steel, which showed different thermal conductivity after the heat treatments. A commercial brake friction material was used to evaluate the friction effectiveness, and the friction tests were carried out using a 1/5 scale dynamometer under various initial braking temperature conditions. The results showed that the tribological property of the disc was strongly affected by the heat treatment schedule. At low temperatures (below $250^{\circ}C$), the friction coefficient increased as a function of disc temperature, indicating that frictional heat increased the adhesion between the disc and pad. In addition, fade was observed at high temperatures (above $250^{\circ}C$); it was pronounced in the case of the disc with low thermal conductivity. The different fade resistances observed in the discs with different heat treatment schedules appear to be influenced by microstructural changes such as carbide redistribution occurring during the heat treatments, which affected the thermal conductivity.

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Effect of Humidity on Friction Characteristics of Automotive Friction Materials

  • Kim, Seong-Jin;Lee, Jae-Young;Jang, Ho
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.150-153
    • /
    • 2001
  • The effects of humidity on friction performance of automotive brake materials were studied using a pad-on-disk type friction tester. Three different friction materials based on a simple formulation were investigated by changing the solid lubricant graphite, MoS$_2$, and Sb$_2$S$_3$. Friction materials without solid lubricants were also examined to study the effect of other ingredients in the matrix on humidity. The friction material containing graphite was strongly affected by the humidity showing lower friction coefficient at high humidity level than other conditions. On the other hand, the friction material containing MoS$_2$exhibited higher friction coefficient at initial stage under high humidity level. The friction material without solid lubricant or with Sb$_2$S$_3$ was not affected by humidity conditions. However, the friction material containing barite showed strong speed dependence.

  • PDF

Transient Heat Transfer Analysis of Brake Drum Shape (브레이크 드럼의 형상에 따른 과도 열전달 해석)

  • Kim, Yang-Sul;An, Su-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents a transient heat transfer analysis of a drum brake shape. The transient heat transfer analysis of automotive drum brakes with frictional contact is performed by using the finite element method. The drum brake type studied in the page is the internally expanding one in which two shoes fitted externally with frictional material are forced outward against surface a rotating drum on the wheel unit. In this case, the braking power is produced by the friction force between a drum and a lining, and is converted into heat. The brake drum has constant material properties. The air inside the drum has temperature-dependent thermal conductivity and enthalpy. Radiation effects are ignored. The result explains the reason why hair crack and cause of drum failure occur. The temperature of drum is in proportion to the drum thickness and nonlinear changes at every points of drum. It's necessary for the decrease of the drum temperature to make the air inside drum flow.