• Title/Summary/Keyword: friction Factor

Search Result 966, Processing Time 0.026 seconds

Diffusion of a Steady Horizontal Line Source in a Turbulent Shear Flow (난류전단(亂流剪斷) 흐름에서의 정상(定常) 수평(水平) 선오염원(線汚染源)의 확산(擴散))

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.191-199
    • /
    • 1993
  • Diffusion of a steady horizontal line source in a turbulent shear flow is simulated by numerically solving a steady two-dimensional advective diffusion equation. The computational result is compared with the analytic solution for uniform velocity and diffusivity distributions over the depth. The analytic solution for constant velocity and diffusivity overestimates the degree of vertical mixing. The normalized equation indicates that friction factor is the only physical parameter that governs the vertical diffusion process. Sensitivities of the diffusion process to the friction factor and initial source position are analyzed. The rate of vertical mixing varies approximately as the square root of the friction factor. The optimal source position, which gives the most rapid mixing, lies above the mid-depth and moves toward the water surface as the friction factor increases.

  • PDF

Finite Element Analysis of Subsurface Multiple Horizontal Cracks Propagation in a Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이상윤;김석삼;권영두
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.373-380
    • /
    • 2000
  • Finite element analysis is performed on the subsurface crack propagation in brittle materials due to sliding contact. The sliding contact is simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. The single crack, coplanar cracks and parallel cracks are modeled to investigate the interaction effects on the crack growth in contact fatigue. The crack location is fixed and the friction coefficients between asperity and half-space are varied to analyze the effect of surface friction on stress intensity factor for horizontal cracks. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factors. With a coplanar crack, the stress intensity factor was increased. However, with a parallel crack, the stress intensity factor was decreased. These results indicate that the interaction of a coplanar crack increases fatigue crack propagation, whereas that of a parallel crack decreases it.

Effect of ground motion characteristics on the pure friction isolation system

  • Nanda, Radhikesh P.;Shrikhande, Manish;Agarwal, Pankaj
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.169-180
    • /
    • 2012
  • The performance of pure friction isolation system with respect to the frequency bandwidth of excitation and the predominant frequency is investigated. A set of earthquake ground motions (artificial as well as recorded [with different combinations of magnitude-distance and local site geology]) is considered for investigating effectiveness of pure friction isolators. The results indicate the performance of pure friction base isolated system does not only depend upon coefficient of friction and mass ratio but the stick-slip behaviour depends upon the frequency content of the excitation as well. Slippage prevails if the excitation frequency lies in a suitable frequency range. This range widens with increasing mass ratio. For larger mass ratios, the sliding effect is more pronounced and the maximum acceleration response is further reduced in the neighbourhood of frequency ratio (${\omega}/{\omega}_n$) of unity. The pure friction isolation system is effective in the case of broadband excitations only and that too, in the acceleration sensitive range of periods. The pure friction system is not effective for protection against narrow band motions for which the system response is quasi-periodic.

Analysis on the Friction Characteristics of Low Viscosity Engine Oils (저점도 엔진오일이 마찰특성에 미치는 영향에 관한 해석적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In this paper, the friction characteristic of engine bearings has been analyzed in terms of a friction loss power, a minimum film thickness and an oil film pressure. This analysis has been focused on the fuel economy improvement with a low viscosity engine oil such as SAE 0W-40, which is used for a friction loss reduction and increased for a Diesel fuel economy. The friction loss power, the minimum oil film thickness and oil film pressure distribution for plain bearings of a Diesel engine are analyzed using an AVL's EXCITE program with a conventional engine oils of SAE 5W-40 and 10W-40, and a low viscosity engine oil of SAE 0W-40. The computed results indicate that a viscosity of engine oils is closely related to the friction loss power and the decreased minimum film thickness in which is a key parameter of a load carrying capacity of an oil film pressure distribution. When the low viscosity engine oil is supplied to engine bearings, it does not affect to the formation of a minimum oil film thickness. But the friction loss power has been significantly affected by low viscosity engine oil at a low operating temperature of 0. Based on the FEM computed results, the low viscosity engine oil at a low temperature range will be an important factor for an improvement of the fuel economy improvement.

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

A Numerical Study on the Effect of Fin Pitch and Fin Array on the Heat Transfer Performance of a Pre-heater (휜의 피치 및 배열 방식에 따른 프리히터의 전열 성능에 관한 연구)

  • Yoo, Ji Hoon;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.40-47
    • /
    • 2013
  • In this paper, a numerical study was performed to investigate the performance characteristics of a pre-heater. The effects of fin pitch and fin array type(in-line, staggered, leaned array) were reported in terms of Colburn j-factor and Fanning friction factor f, as a function of Re. Three-dimensional numerical simulation has been performed by using flow analysis program, FLUENT 13.0. The results show that Colburn j-factor decreases with the decrease of fin pitch attached in the annular tube. But the fin pitch has little effect on f-factor. The staggered array and leaned array show improved heat transfer performance compared with in-line array, so that Colburn j-factor was increased. It also shows that the f-factor of leaned array is the highest in the studied range of Reynolds number.

Wet surface performance test of fin-tube heat exchangers with slit-wavy fin (물결형 슬릿핀이 장착된 핀-관 열교환기의 습표면 성능 실험)

  • Kim, N.H.;Kim, J.S.;Cho, J.P.;Yun, J.H.;Peck, J.H.;Lee, S.G.;Nam, S.B.;Kwon, H.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.153-162
    • /
    • 1997
  • In this study, the wet surface heat transfer coefficients and friction factors of the heat exchanger with slit-wavy fin were measured. Four sample cores of two or three row with fins of 12 fpi or 16 fpi were tested. Tests were conducted in a closed loop wind tunnel, where the heat exchanger was mounted at 45 degree inclination angle. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 420-81. During the course, new definitions of the $\varepsilon$-NTU applicable to enthalpy driving system were introduced. The wet surface heat transfer coefficients were approximately equal to the dry surface values. However, the friction factors were approximately 120% to 170% higher than those of the dry surface. Both the heat transfer coefficient and the friction factor of the wet surface increased as the relative humidity increased, fin pitch decreased, and the number of row decreased, although the difference was not large.

  • PDF

The Study for Cold Forging of Spline with Different Friction Factor on Die Surface (금형면 마찰조건을 달리한 스플라인 단조에 관한 연구)

  • Kim, Kwan-Woo;Lee, Seok-Jin;Kim, Moon-Ki;Cho, Seong-Yeol;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2009
  • Forging of square spline was investigated by using finite element methods in this study. Spline is widely used by torque transmitter in the fields of automobile, aircraft, and shipping etc. Friction on the surface of die is regarded as the most important factor to improve the dimensional accuracy for complete forming of spline teeth. Finite element simulation was carried out to improve the formability of the spline, especially remove unnecessary burrs which were extruded in gap between the die and the punch. To remove the burrs, various friction factors are considered on the surfaces of the die in the simulations and punch flat surface was designed. The simulated results were compared with experimental ones. As a results, it is possible to control the growth of burrs and improve formability of spline teeth by applying various friction factors and design of punch flat surface.

Effect of Number of Rough Walls on Pressure Drop and Heat Transfer in Roughened Channel (거친 채널에서 거친 벽면의 수가 압력강하와 열전달에 미치는 효과)

  • Kim, M.H.;Bae, S.T.;Ahn, S.W.;Kang, H.K.;Kim, C.D.;Woo, J.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1083-1090
    • /
    • 2005
  • Repeated ribs are used on heat exchange surfaces to promote turbulence and enhance convective heat transfer. Applications include fuel rods of gas-cooled nuclear reactors, inside cavities of turbine blades, and internal surfaces pipes used in heat exchangers. Despite the great number of literature papers, only few experimental data concern detailed distributions of friction factors and heat transfer coefficients in square channels varying the number of rough walls. This issue is tackled by investigating effects of different number of ribbed walls on heat transfer and friction characteristics in square channel. The rough wall have a 45$^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The heat transfer coefficient and friction factor values increase with increasing the number of rough walls.

  • PDF

Numerical analysis of heat transfer and friction factors in a duct having circular perforated baffles (원형 다공배플이 있는 덕트에서의 열전달과 마찰계수에 관한 수치해석)

  • Oh, S.K.;Ahn, S.W.;Ary, Bachtiar Krishna Putra;Bae, S.T.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present numerical study was performed to determine how the two perforated baffles( Inclined angle=$5^{\circ}$; perforation diameter=2cm) placed at a rectangular duct affect heat transfer and associated friction factors. The parametric effects of perforated baffles(3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,000 on the heated target surface are explored. As for the investigation of heat transfer behaviours on the local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=0.8$ of the edge baffles, it is evident that the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles. The numerical results by commercial code CFX 10.0 are confirmed with the experimental data.