• Title/Summary/Keyword: friction

Search Result 8,277, Processing Time 0.037 seconds

Effects of Additives on the Friction and Wear Properties of PTFE Composites (PTFE 복합재료의 마찰 . 마모 특성에 미치는 첨가제의 영향)

  • 김용직;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.88-94
    • /
    • 1999
  • Recently, PTFE-polyimide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. The friction and wear test was carried out for the different composition ratio under the atmosphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. Notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20%-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s because adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI 80%. PI 100% showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

Development of a double-sliding friction damper (DSFD)

  • Shen, Shaodong;Pan, Peng;Sun, Jiangbo;Gong, Runhua;Wang, Haishen;Li, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • In practical engineering, the friction damper is a widely used energy dissipation device because of its large deformation capacity, stable energy dissipation capability, and cost effectiveness. While based on conventional friction dampers, the double-sliding friction damper (DSFD) being proposed is different in that it features two sliding friction forces, i.e., small and large sliding friction forces, rather than a single-sliding friction force of ordinary friction dampers. The DSFD starts to deform when the force sustained exceeds the small-sliding friction force, and stops deforming when the deformation reaches a certain value. If the force sustained exceeds the large sliding friction force, it continues to deform. Such a double-sliding behavior is expected to endow structures equipped with the DSFD better performance in both small and large earthquakes. The configuration and working mechanism of the DSFD is described and analyzed. Quasi-static loading tests and finite element analyses were conducted to investigate its hysteretic behavior. Finally, time history analysis of the single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems were performed to investigate the seismic performance of DSFD-equipped structures. For the purpose of comparison, tests on systems equipped with conventional friction dampers were also performed. The proposed DSFD can be realized perfectly, and the DSFD-equipped structures provide better performances than those equipped with conventional friction dampers in terms of interstory drift and floor acceleration. In particular, for the MDOF system, the DSFD helps the structural system to have a uniform distributed interstory drift.

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Friction Weldability of Grey Cast Iron - by the Concept of Friction Weld Heat Input Parameter - (회주철의 마찰용접 특성에 관한 연구 - 입열량 이론식을 중심으로 -)

  • Jeong, Ho-Shin;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • Joining of grey cast iron by fusion welding has much difficulties for its extremely low ductility and low toughness because of the flake form of the graphite. And the brittle microstructure, i.e. ledeburite may be formed during fusion welding by its rapid cooling rates. By these kinds of welding problem, preheat and post heat treatment temperature must be increased to avoid weld crack or welding problems. In order to avoid these fusion welding problem, friction welding of cast iron was carried out for improving joint soundness, establishing friction welding variables. There is no factor for evaluating friction weldability in continuous drive type friction welding. In this point of view, this study proposed the parameters for calculating friction weld heat input. The results obtained are as follows ; 1. There was a close relationship between tensile strength and flash appearance of friction welded joint. 2. Tensile strength was decreased and flash was severely oxidized as increasing frictional heating time. 3. As increased forging pressure $P_2$, flash had a large crack and tensile strength was decreased. 4. As powdered graphite by rotational frictional force induced flat surface and hindered plastic flow of metal, tensile strength of welded joint was decreased. 5. Heat input for continuous drive type friction welding could be calculated by the factors of $P_1$, $P_2$ and upset distance(${\delta}$).

The Estimation of Friction Velocity by Hydraulic Parameters Reflecting Turbulent Flow Characteristics in a Smooth Pipe Line (매끄러운 관수로 내 난류흐름특성을 반영한 수리학적 매개변수에 의한 마찰속도의 산정)

  • Choo, Tai Ho;Son, Jong Keun;Kwon, Yong Been;Ahn, Si Hyung;Yun, Gwan Seon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2016
  • Grid(pipe network) design is an important element of Smart Water Grid, which essential to estimate hydraulic parameters such as the pressure, friction factor, friction velocity, head loss and energy slope. Especially, friction velocity in a grid is an important factor in conjunction with energy gradient, friction coefficient, pressure and head loss. However, accurate estimation friction head loss, friction velocity and friction factor are very difficult. The empirical friction factor is still estimated by using theory and equation which were developed one hundred years ago. Therefore, in this paper, new equation from maximum velocity and friction velocity is developed by using integration relationship between Darcy-Weisbach's friction head loss equation and Schlichting equation and regression analysis. To prove the developed equation, smooth pipe data areis used. Proposed equation shows high accuracy compared to observed data. Study results are expected to be used in stability improvements and design in a grid.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine (내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.

A New Measure of Asset Pricing: Friction-Adjusted Three-Factor Model

  • NURHAYATI, Immas;ENDRI, Endri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.605-613
    • /
    • 2020
  • In unfrictionless markets, one measure of asset pricing is its height of friction. This study develops a three-factor model by loosening the assumptions about stocks without friction, without risk, and perfectly liquid. Friction is used as an indicator of transaction costs to be included in the model as a variable that will reduce individual profits. This approach is used to estimate return, beta and other variable for firms listed on the Indonesian Stock Exchange (IDX). To test the efficacy of friction-adjusted three-factor model, we use intraday data from July 2016 to October 2018. The sample includes all listed firms; intraday data chosen purposively from regular market are sorted by capitalization, which represents each tick size from the biggest to smallest. We run 3,065,835 intraday data of asking price, bid price, and trading price to get proportional quoted half-spread and proportional effective half-spread. We find evidence of adjusted friction on the three-factor model. High/low trading friction will cause a significant/insignificant return difference before and after adjustment. The difference in average beta that reflects market risk is able to explain the existence of trading friction, while the difference between SMB and HML in all observation periods cannot explain returns and the existence of trading friction.

The Effects of Graphite and Magnesium Oxide in Automotive Friction Materials on Friction and Formation of Transfer Film (자동차용 마찰재에 사용되는 흑연과 마그네시아에 따른 전이막과 마찰특성에 관한 연구)

  • Bae, Eun-Gap;Yoon, Jang-Hyuk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.226-234
    • /
    • 2002
  • A systematic study of the role of transfer films on friction properties was performed with various temperatures in the brake system. An NAO friction material specimens containing 9 ingredients were tested using a pad-on-disk type friction tester A new method of measuring the transfer film thickness was developed by considering the electrical resistance of the transfer film using a 4-point probe technique. The properties of transfer film such as surface morphology and film distribution vaied according to the relative amount of graphite and magnesium oxide. By using SEM, it was possible to obtain information about the chemical composition of the transfer film. Results showed that there detected a threshold value of the relative amount of a two active materials to maintain a certiain thickness of a transfer film. Results also showed that formation of friction layer generated on the friction surface was strongly affected by chemical action of two ingredients during sliding due to chemical reaction of solid lubricants at different interface temperature. The results suggested that no apparent relationship between transfer film thickness and the average friction coefficient was founded and friction characteristics were affected more by the property of the solid lubricant and abrasive in the material.

  • PDF

Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator (대형 굴삭기용 주차 브레이크의 마찰 특성 분석)

  • Lee, Y.B.;Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.