• Title/Summary/Keyword: freundlich isotherm

Search Result 419, Processing Time 0.024 seconds

The Sorption Kinetic Studies and Development of Mixed Culture for Removal of Nonpoint Pollution Source (비점오염원 처리를 위한 혼합여재의 개발 및 흡착 Kinetic 연구)

  • Chung, Woojin;Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This study investigated on the adsorption of nonpoint pollution source using the Sand, hydroxyapatite(HAP), Zeolite and mixed culture. The adsorption of nonpoint pollution source on Sand, hydroxyapatite(HAP), Zeolite and mixed culture was investigated during a series of batch adsorption experiments. After the batch absorption experiments analysed COD, T-N, T-P on adsorption water. The experimental data was analysed using the pseudo-first-order adsorption kinetic models. Langmuir and Freundlich isotherm models were tested for their applicability. The maximum adsorbed amount $(Q_{max})$ of COD were found to be sand 0.0511mg/g, HAP 0.1905mg/g, Zeolite 1.0366mg/g and Mixed media 0.7444mg/g. The maximum adsorbed amount $(Q_{max})$ of T-N were found to be sand 0.0159mg/g, HAP 0.0537mg/g, Zeolite 0.5496mg/g and Mixed media 0.1374mg/g. The maximum adsorbed amount $(Q_{max})$ of T-P were found to be sand 0.0202mg/g, HAP 0.1342mg/g, Zeolite 0.0462mg/g and Mixed media 0.1180mg/g. As a result, the mixed media was effective to remove nonpoint pollution source.

Phosphate Desorption of Kaolinite KGa-1b (Source Clay) (카올리나이트 KGa-1b (표준 점토)의 인산염 탈착 특성)

  • Cho, Hyen-Goo;Kim, Soo-Oh;Choo, Chang-Oh;Do, Jin-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.289-295
    • /
    • 2009
  • The characteristics of phosphate desorption on kaolinite was studied by batch adsorptiondesorption experiments. Desorption procedure was carried out through sequential extraction method at pH 4. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorption-desorption reaction of P on kaolinite was irreversible, and most of adsorbed P on kaolinite were not easily dissolved to aqueous solution, but may might be fixed on kaolinite surface. The desorption isotherms were well fitted with the Freundlich and Temkin equations in the case of short reaction and long reaction time, respectively. The desorption reaction was divided into the early fast reaction and the later slow reaction. The percentage of desorption generally decreased with increasing adsorbed P concentration and increasing desorption reaction time.

Availability of Chicken Feather for Removal of Hexavalent Chromium and Oil (6가 크롬 및 유류 제거를 위한 우모 폐기물의 이용가능성)

  • Jeong, Jin-Ha;Lee, Na-Ri;Park, Sung-Bo;Jeong, Seong-Yun;Park, Geun-Tae;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.369-375
    • /
    • 2012
  • We investigated usefulness of chicken feather as bioadsorbent for removal of hexavalent chromium[Cr(VI)] and oil from aqueous solution. Chicken feather was chemically treated with DTPA, EDTA, NaOH and SDS, respectively. Among them, EDTA was the most effective in adsorbing Cr(VI). Cr(VI) uptake by chicken feather was increased with decreasing pH; the highest Cr(VI) uptake was observed at pH 2.0. By increasing Cr(VI) concentration, Cr(VI) uptake was increased, and maximum Cr(VI) uptake was 0.34 mmol/g. Cr(VI) adsorption by chicken feather was well described by Freundlich isotherm than Langmuir isotherm and Freundlich constant(1/n) was 0.476. As the concentration of chicken feather was increased, Cr (VI) removal efficiency was increased but Cr(VI) uptake was decreased. Most of Cr(VI) was adsorbed at early reaction stage(1 h) and adsorption equilibrium was established at 5 h. On the other hand, chicken feather adsorbed effectively oils including bunker-A and bunker-C. In conclusion, our results suggest that chicken feather waste could be used to remove heavy metal and oil; it is a potential candidate for biosorption material.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Effectiveness of Feather Waste for Orange II Removal from Aqueous Solutions (수용액 중 Orange II 흡착 제거를 위한 우모폐기물의 이용가능성)

  • Park, Soo-Yeun;Yoo, Ji-Yeon;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.743-751
    • /
    • 2018
  • The objective of this study was to investigate the adsorption potential of chicken feathers for the removal of OrangeII (AO7) from aqueous solutions. Batch experiments were performed as a function of different experimental parameters such as initial pH, reaction time, feather dose, initial OrangeII concentration and temperature. The highest OrangeII uptake was observed at pH 1.0. Most of the OrangeII was adsorbed at 2 h and an adsorption equilibrium was reached at 6 h. As the amount of chicken feather was increased, the removal efficiency of OrangeII increased up to 99%, but its uptake decreased. By increasing the initial concentration and temperature, OrangeII uptake was increased. The experimental adsorption isotherm exhibited a better fit with the Langmuir isotherm than with the Freundlich isotherm, and maximum adsorption capacity from the Langmuir constant was determined to be 0.179244 mmol/g at $30^{\circ}C$. The adsorption energy obtained from the Dubinin-Radushkevich model was 7.9 kJ/mol at $20^{\circ}C$ and $30^{\circ}C$ which indicates the predominance of physical adsorption. Thermodynamic parameters such as ${\Delta}G^0$, ${\Delta}H^0$, and ${\Delta}S^0$ were -12.28 kJ/mol, 20.64 kJ/mol and 112.32 J/mol K at $30^{\circ}C$, respectively. This indicates that the process of OrangeII adsorption by chicken feathers was spontaneous and endothermic. Our results suggest that as a low-cost biomaterials, chicken feather is an attractive candidate for OrangeII removal from aqueous solutions.

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

Nitrate Removal by $FeCl_3$-Treated Activated Carbon (염화철 처리 활성탄에 의한 질산염 제거)

  • 정경훈;최형일;정오진
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

A Study on Recycle of Waste Concretes for Neutralization and Removal of Heavy Metals ( I ) (페콘크리트의 중화 및 중금속 제거를 위한 재활용에 관한 연구 (I))

  • Kim, Eun-Ho;Kim, Jung-Kwon;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.497-503
    • /
    • 1997
  • This study was performed to Investigate the utilization of waste concretes for neutralization and removal of heavy metals In plating wastewater, because waste concretes have been known to be very porous, to have high species surface area and to have alkaline minerals such as calcium. The results obtained from this research showed that waste concretes had a buffer capacity to neutralize an acidic alali system in plating wastewater. Generally, neutralization and removal rate of heavy metals were excellent in the increase of waste concrete amounts and a small size. Because a coefficient of correlation was high, it seemed that removal of heavy metals could be explained by Freundlich and Langmuir isotherms. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider waste concretes as a good adsorbent. But, we could know that waste concretes were capable of removing a part of heavy metals. In point of building waste debris, if waste concretes substituted for a valuable adsorbent such as actuated carbon, they could look forward to an expected economical effect.

  • PDF

Sorption of copper ion on waste pig bone (돼지 폐(廢) 골분(骨粉)에 의한 구리이온 흡착(吸着))

  • Kim, Eun-Jung;Woo, Sung-Hoon;Park, Seung-Cho
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.45-49
    • /
    • 2006
  • The removal of copper ion from aqueous solution by adsorption with bone char that made from spent pig bone has been studied. This paper was studied the effects of bone char dosage and pH. The optimal results show that bone char adsorbs about 96.5 percent of copper ion in aqueous solution containing 50 mg/L as initial concentration at pH 5.0 when the bone char of 5g/L is used for 30 hours. Increase in the initial pH of the copper solution resulted in an increase in the copper ion uptake per weight of the sorbent Freundlich isotherm model was found to be applicable for the experimental data of $Cu^{2+}$.