Phosphate Desorption of Kaolinite KGa-1b (Source Clay)

카올리나이트 KGa-1b (표준 점토)의 인산염 탈착 특성

  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soo-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choo, Chang-Oh (Department of Earth and Environmental Sciences, Andong National University) ;
  • Do, Jin-Young (School of Cultural Assets, Gyeongju University)
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 추창오 (안동대학교 지구환경과학과) ;
  • 도진영 (경주대학교 문화재학부)
  • Published : 2009.12.30

Abstract

The characteristics of phosphate desorption on kaolinite was studied by batch adsorptiondesorption experiments. Desorption procedure was carried out through sequential extraction method at pH 4. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorption-desorption reaction of P on kaolinite was irreversible, and most of adsorbed P on kaolinite were not easily dissolved to aqueous solution, but may might be fixed on kaolinite surface. The desorption isotherms were well fitted with the Freundlich and Temkin equations in the case of short reaction and long reaction time, respectively. The desorption reaction was divided into the early fast reaction and the later slow reaction. The percentage of desorption generally decreased with increasing adsorbed P concentration and increasing desorption reaction time.

카올리나이트 KGa-1b (표준 점토)의 인산염 탈착 특성을 규명하기 위하여 벳치(batch) 흡착-탈착 실험을 실시하였으며, 탈착 과정은 연속추출법에 따라 pH 4에서 시행하였다. 인의 함량은 UV 분광분석기를 시용하여 측정하였으며, 이 때 파장은 820 nm를 이용하였다. 카올리나이트의 인산염 흡착-탈착 반응은 비가역적으로 일어나며, 흡착된 대부분의 인산염은 고착되는 경향을 나타낸다. 인산염 탈착 등온선은 반응 시간이 짧은 경우 프로인드리히 등온선에, 반응 시간이 긴 경우 탬킨 등온선에 더 일치하는 경향을 보인다. 인산염 탈착 반응은 초기의 빠른 반응과, 후기의 느린 반응으로 구분된다. 흡착된 인산염의 농도가 높아질수록 탈착률은 감소하는 경향을 보이며, 탈착 시간이 길어지면 탈착률은 감소하는 경향을 보여준다.

Keywords

References

  1. 조현구, Johnston, C.T., Premachandra, G.S. (2006) 카올리나이트 KGa-1b(표준 점토)의 인산염 흡착 특성. 한국광물학회지, 19, 247-258
  2. 조현구, 최재호, 문동혁, 김순오, 도진영 (2008) 카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성. 한국광물학회지, 21, 117-127
  3. 황진연, 장명익, 김준식, 조원모, 안병석, 강수원 (2000) 우리나라 황토(풍화토)의 구성광물 및 화학성분. 한국광물학회지, 13, 147-163
  4. Al-Kanani, T. and MacKenzie, A.F. (1991) Sorption and desorption of orthophosphate and pyrophosphate by mineral fractions of soils, goethite, and kaolinite. Can. J. Soil Sci., 71, 327-338 https://doi.org/10.4141/cjss91-032
  5. Bar-Yosef, B. and Kafkafi, U (1978) Phosphate desorption from kaolinite suspensions. Soil. Sci. Soc. Amer. J., 42, 570-574 https://doi.org/10.2136/sssaj1978.03615995004200040007x
  6. Barrow, N.J. (1983) On the reversibility of phosphate sorption by soils. J. Soil. Soc., 34, 751-758 https://doi.org/10.1111/j.1365-2389.1983.tb01069.x
  7. Bera, R., Seal, A., Bhattacharyya, P., Mukhopadhyay, K., and Giri, R. (2006) Phosphate sorption desorption chararcteristics of some ferruginous soils of tropical region in Eastern India. Environ Geol., 51, 399-407 https://doi.org/10.1007/s00254-006-0335-9
  8. Bhatti, J.S. and Comerford, N.B. (2002) Measurement of phosphorous desorption from a spodic horizon using two different desorption methods and pH control. Commun. Soil Sci. Plant Anal., 33, 845-853 https://doi.org/10.1081/CSS-120003070
  9. Bhatti, J.S., Comerford, N.B., and Johnston, C.T. (1998) Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a Spodic horizon. Soil Sci. Soc. Am. J., 62, 1089-1095 https://doi.org/10.2136/sssaj1998.03615995006200040033x
  10. Boyd, S.A., Sheng, G., Teppen, B.J., and Johnston, C.F. (2001) Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ. Sci. Technol., 35, 4227-4234 https://doi.org/10.1021/es010663w
  11. Brady, N.C. and Weil, R.R. (2004) Soil Phosphorous, Potassium, and Micronutrients. In: Elements of the Nature and Properties of Soils (2nd Ed.). Prentice Hall, 422-471
  12. Celi, L., De Luca, G., and Barberis, E. (2003) Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Science, 168, 479-488 https://doi.org/10.1097/00010694-200307000-00003
  13. Chen, Y.-S.R., Butler, J.N., and Stumm, W. (1973) Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions. J. Colloid Interf. Sci., 43, 421-436 https://doi.org/10.1016/0021-9797(73)90388-3
  14. Chipera, S.J. and Bish, D.L. (2001) Baseline studies of the clay minerals society source clays: Powder x-ray diffraction anaylses. Clays Clay Miner., 49, 398-409 https://doi.org/10.1346/CCMN.2001.0490507
  15. Drever, J.I. (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments (3rd ed.), Prentice Hall, 436p
  16. Eaton, A.D., Clesceri, L.S., Rice, E.W., and Greenberg, A.E. (Eds) (2005) Standard Methods for the Exami nation of Water and Wastewater (21st Ed). 4-159
  17. Hingston, F.J., Posner, A.M., and Quirk, J.P. (1974) Anion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxides surface. J. Soil. Soc., 35, 16-26
  18. Ioannou, A., Dimirkou, A., and Papadopoulos, P. (1998) Phosphate sorption by goethite and kaolinite-goethite system as described by isotherms. Commun. Soil Sci. Plant Anal., 29, 2175-2190 https://doi.org/10.1080/00103629809370101
  19. Kafkafi, U., Posner, A.M., and Quirk, J.P. (1967) Desorption of phosphate fom kaolinite. Soil. Sci. Soc. Amer. Proc., 31,348-353 https://doi.org/10.2136/sssaj1967.03615995003100030019x
  20. Kafkafi, U., Giskin, M., and Hagin, J. (1970) Phosphate and silica adsorption and desorption from soils. Israel J. Chemistry, 8, 373-381 https://doi.org/10.1002/ijch.197000043
  21. Liu, H.F. and Liptak, B.E. (ed) (2000) Groundwater and Surface Water Pollution. CRC Press LLC, 52-62
  22. Liu, M., Hou, L., Xu, S., Ou, D., Yang, Y., Zhang, B., and Liu, Q. (2002) Adsorption of phosphate on tidal flat surface sediments from the Yangtze Estuary. Environ. Geol., 42, 657-665 https://doi.org/10.1007/s00254-002-0574-3
  23. Nagarajah, S., Posner, A.M., and Quirk, J.P. (1968) Desorption of phosphate from kaolinite by citrate and bicarbonate. Soil Sci. Soc. Amer. Proc., 32, 507-510 https://doi.org/10.2136/sssaj1968.03615995003200040025x
  24. Pissarides, A., Stewart, J.W., and Rennie, D.A. (1968) Influence of cation saturation on phosphorous adsorption by selected clay minerals. Can. J. Soil Sci., 48, 151-157 https://doi.org/10.4141/cjss68-018
  25. Rao, N.S. and Prasad, P.R. (1997) Phosphate pollution in the groundwater of lower Vamsadhara river basin, India. Environ. Geol., 31, 117-122 https://doi.org/10.1007/s002540050170
  26. Sato, S. and Comerford, N.B. (2006) Assessing methods for developing phosphorous desorption isotherms from soils using anion exchange membranes. Plant and Soil, 279, 107-117 https://doi.org/10.1007/s11104-005-0437-2
  27. Sparks, D.L. (2003) Environmental Soil Chemistry. Academic Press, 352p
  28. Sui, Y. and Thompson, M.L. (2000) Phosphorus sorption, desorption, and buffering capacity in a Biosolids-Amended Mollisol. Soil Sci. Soc. Am. J., 64, 164-169 https://doi.org/10.2136/sssaj2000.641164x
  29. Taylor, J.C. (1991) Computer program for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2-9 https://doi.org/10.1017/S0885715600016778
  30. White, R.E. and Taylor, A.W. (1977) Reactions of soluble phosphate with acid soils: the intereception of adsorption-desorption isotherm. J. Soil Sci., 28, 314-328 https://doi.org/10.1111/j.1365-2389.1977.tb02240.x
  31. Zhou, M. and Li, Y. (2001) Phosphorus-sorption characteristics of calcareous soils and limestone from the Southern Everglades and adjacent farmlands. Soil Sci. Soc. Am. J., 65, 1404-1412 https://doi.org/10.2136/sssaj2001.6551404x