• Title/Summary/Keyword: freundlich

Search Result 630, Processing Time 0.02 seconds

Adsorption Characteristics of Elemental Iodine and Methyl Iodide on Base and TEDA Impregnated Carbon (활성탄을 이용한 원소요오드 및 유기요오드 흡착특성)

  • Lee, Hoo-Kun;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-55
    • /
    • 1996
  • For the purpose of controlling the release of radioiodine to the environment in nuclear power plants, adsorption characteristics of elemental iodine and methyl iodide on the base carbon and 2%, 5% TEDA impregnated carbons were studied. The amounts of adsorption of elemental iodine and methyl iodide on the carbons were compared with Langmuir, Freundlich, Sips and Dubinin-Astakhov(DA) isotherm equations. Adsorption data were well correlated by the DA equation based on the potential theory. Adsorption energy distributions were obtained from the parameters of the DA equation derived from the condensation approach method. For the adsorption of methyl iodide and elemental iodine-carbon system, the DA equation can be well expressed by the degree of heterogeneity of the micropore system because the surface is nonuniform when its potential energy is unequal. The adsorption energy distribution wes investigated to find a surface heterogeneity on the carbon. The surface heterogeneity for iodine-carbon system is highly affected by the adsorbate-adsorbent interaction as well as the pore structure. The surface heterogeneity increases as a content of TEDA impregnated increases. The adsorption nature of methyl iodide on carbon turned out to be more heterogeneous than that of elemental iodine.

  • PDF

Adsorption Features of Nickel Ion on Deep Sea Manganese Nodule (심해저 망간단괴를 흡착제로 한 니켈 함유 폐수 처리에 대한 기초 연구)

  • Baek, Mi-Hwa;Shin, Myung-Sook;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.116-121
    • /
    • 2006
  • Fundamental investigations have been carried out to find the applicability of manganese nodule as an adsorbent of nickel ion with an intention that nickel can be secured in manganese nodule along with the treatment of wastewater. The average content of manganese in nodules which used in the experiments was about 27%. The content of nickel in manganese nodules was observed to increase up to 4 times higher with comparison to its original value after adsorption. When the initial concentration of nickel ion in artificial wastewater was lower than 500 mg/L, its adsorbed amount on manganese nodule was shown to increase continuously. However, no more than about 82 mg/L of nickel was attained at higher initial nickel ion concentration than 500 mg/L. The adsorption of nickel ion was increased with temperature under experimental conditions and as the size of manganese nodule particles became smaller more nickel ion was adsorbed on adsorbent. Regarding the effect of pH, the adsorption of nickel ion was more hindered as the solution became acidic. Adsorption behavior of nickel ion on manganese nodule was found to follow the Freundlich model well and kinetic analysis showed that the adsorption reaction of nickel ion was second order. Thermodynamic parameters for the nickel ion adsorption were estimated on the basis of thermodynamic equations and they were in good agreement with experimental results.

A comparative study on defluoridation capabilities of biosorbents: Isotherm, kinetics, thermodynamics, cost estimation and regeneration study

  • Yihunu, Endashaw Workie;Yu, Haiyan;Junhe, Wen;Kai, Zhang;Teffera, Zebene Lakew;Weldegebrial, Brhane;Limin, Ma
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.384-392
    • /
    • 2020
  • The presence of high fluoride concentration (> 1.5 mg/L) in water causes serious health problems such as fluorosis, infertility, brain damage, etc., which are endemic to many places in the world. This study has investigated the fluoride removal capacity of the novel activated biochar (BTS) and hydrochar (HTS) using Teff (Eragrostis tef) straw as a precursor. Activated biochar with mesoporous structures and large specific surface area of 627.7 ㎡/g were prepared via pyrolysis process. Low-cost carbonaceous hydrochar were also synthesized by an acid assisted hydrothermal carbonization process. Results obtained from both adsorbents show that the best local maximum fluoride removal was achieved at pH 2, contact time 120 min and agitation speed 200 rpm. The thermodynamic studies proved that the adsorption process was spontaneous and exothermic in nature. Both adsorbents equilibrium data fitted to Langmuir isotherm. However, Freundlich isotherm fitted best for BTS. The maximum fluoride loading capacity of BTS and HTS was found to be 212 and 88.7 mg/g, respectively. The variation could primarily be attributed to a relatively larger Surface area for BTS. Hence, to treat fluoride contaminated water, BTS can be promising as an effective adsorbent.

Adsorption of Cu(II) from Aqueous Solutions Using Pine (Pinus densiflora) Wood (소나무(Pinus densiflora) 목질을 이용한 수용액 중의 Cu(II) 흡착)

  • Kim, Ha-Na;Park, Se-Keun;Yang, Kyung-Min;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.195-202
    • /
    • 2007
  • Milled Korean pine (Pinus densiflora) wood was used to evaluate its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled woods were pretreated with 1N NaOH, 1N $HNO_3$, and distilled water, respectively, to examine the effect of pretreatment. Within the tested pH range between 3 and 6, copper adsorption efficiency of NaOH-treated wood(96~99%) was superior to the $HNO_3$-treated wood(19~31%) and distilled water-treated wood(18~35%). The efficiency of copper removal by wood enhanced with increasing solution pH and reached a maximum copper ion uptake at pH 5~6. Adsorption behavior of copper onto both raw and $HNO_3$-treated woods was mainly attributed to interaction with carboxylic acid group. For NaOH-treated wood, carboxylate ion produced by hydrolysis or saponification was a major functional group responsible for Cu sorption. NaOH treatment of wood changed the ester and carboxylic acid groups into carboxylate group, whereas $HNO_3$ treatment did not affect the production of functional groups which could bind copper. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto NaOH-treated wood. A batch isotherm test using NaOH-treated wood showed that equilibrium sorption data were better represented by the Langmuir model than the Freundlich model.

  • PDF

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Removal CO2 Using Na2CO3, K2CO3 and Li2CO3 Impregnated Activated Carbon -Characteristics of CO2 Adsorption in Fixed Bed Reactor- (Na2CO3, K2CO3 및 Li2CO3 첨착활성탄을 이용한CO2 제거 -고정층 반응기에서의 CO2 흡착특성-)

  • Choi, Won-Joon;Jung, Jong-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The purpose of this study was to gain basic information on the characteristics of $CO_2$ adsorption in relation to $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon in a Fixed Bed Reactor. From the results of this study the following conclusions were made: $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon had a longer breakthrough time and more enhanced adsorption capacity than activated carbon alone. When tested with isothermal adsorption and tested for $CO_2$ adsorption the amount of $CO_2$ adsorbed varied with temperature, $CO_2$ inlet concentration, gas flow rate, aspect ratio, etc. Based on the results, when Langmuir, Freundlich and Dubinin-Polanyi adsorption isotherms were used for linear regression of isothermal adsorption data, Langmuir adsorption isotherm was the most suitable. And, the optimum condition for $Na_2CO_3$ and $K_2CO_3$ impregnated activated carbon make-up was 1N and $Li_2CO_3$ was 0.1N. It could be concluded that adsorption capacity was decreased with adsorption temperature and increased gas concentration. When the aspect ratio (L/D) was varied 0.5, 1.0 and 2.0, the significant drop of adsorption amount was observed below 1.0 and breakthrough time was shortened with gas flow rate.

Isolation and Identification of Linear Alkylbenzene Sulfonate Degrading Bacteria (Linear Alkylbenzene Sulfonate 분해세균의 분리 및 동정)

  • Lee, Ki-Moo;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • Among the various bacterial isolates from municipal sewages which utilized linear alkylbenzene sulfonate (LAS) as a sole source of carbon. 3 potent strains - KL-3, SH-2 and EN-1 - were selected. The strains were classified: KL-3 as a strain belong to the genus Klebsiella; SH-2 Shigella; and EN-1 Enterobacter, respectively. They were grown in a broth containing 200 ppm of LAS, using a laboratory scale fermentor: the bacterial growth reached stationary phase after 2 days with a maximum viability of $10^8cfu/mL$ of the culture; initial rates of LAS degradation were high during the first 24 hours of cultivation (KL-3 and SH-2, approx. 50%; EN-1, 20%); after 1 day a lag period of about 24 hours was observed for all the strains, and thereafter break-down proceeded rapidly; final rates after 7 days were approximately 85% by KL-3, 82% by SH-2 and 75% by EN-1. Adsorption of LAS by the bacterial cell mass was high for the strain SH-2, as Freundlich equation: Y= 0.030X + 0.95 was calculated.

  • PDF

Steam Activated Carbon Preparation Using HTFBR from Biomass and its Adsorption Characteristics

  • Asirvatham, J. Herbert;Gargieya, Nikhar;Paradkar, Manali Sunil;Prakash Kumar, B.G.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • The objective of this work is to study the feasibility of the preparation of the activated carbon (AC) from coconut tree flowers using high temperature fluidized bed reactor (HTFBR). The activating agent used in this work is steam. The reactor was operated at various activation temperature (650, 700, 750, 800 and $850^{\circ}C$) and activation time (30, 60, 120 and 240 min) for the production of AC from coconut tree flowers. Effect of activation time and activation temperature on the quality of the AC preparation was observed. Prepared AC was characterized in-terms of iodine number, methylene blue number, methyl violet number, ethylene glycol mono ethyl ether (EGME) surface area and SEM photographs. The best quality of AC from coconut tree flowers (CFC) was obtained at an activation temperature and time of $850^{\circ}C$ and 1 hr restectively. The effectiveness of carbon prepared from coconut tree flowers in adsorbing crystal violet from aqueous solution has been studied as a function of agitation time, carbon dosage, and pH. The adsorption of crystal violet onto AC followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity $q_m$ was 277.78 mg/g., equilibrium time was found to be 180 min. This adsorbent from coconut tree flowers was found to be effective for the removal of CV dye.

Removal of heavy metals in electroplating wastewater by powdered activated carbon (PAC) and sodium diethyldithiocarbamate-modified PAC

  • Kim, Tae-Kyoung;Kim, Taeyeon;Choe, Woo-Seok;Kim, Moon-Kyung;Jung, Yong-Jun;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • We investigated simultaneous removal of heavy metals such as Cr, Ni, and Zn by adsorption onto powdered activated carbon (PAC) and PAC modified with sodium diethyldithiocarbamate (PAC-SDDC). Modification of PAC was confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy and energy dispersive X-ray spectroscopy. Both PAC and PAC-SDDC reached adsorption equilibrium within 48 h, and the adsorption kinetics followed a pseudo-second order reaction kinetics. The removal of metals was enhanced with increasing both adsorbent dosage and followed the descending order of Cr > Ni > Zn for PAC and Cr > Zn > Ni for PAC-SDDC, respectively. Adsorption kinetics followed pseudo-second order kinetics. Adsorption kinetic results were well fitted by the Freundlich isotherm except for Cr adsorption onto PAC. The optimum pH for heavy metal adsorption onto PAC was 5, whereas that for PAC-SDDC ranged from 7 to 9, indicating that modification of PAC with SDDC significantly enhanced heavy metal adsorption, especially under neutral and alkaline pH conditions. Our results imply that SDDC modified PAC can be applied to effectively remove heavy metals especially Cr in plating wastewaters without adjusting pH from alkaline to neutral.

Adsorption characteristics of strontium onto K2Ti4O9 and PP-g-AA nonwoven fabric

  • Lee, Tae hun;Na, Choon-Ki;Park, Hyunju
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.330-338
    • /
    • 2018
  • This study investigated the possibility of using potassium titanate oxide ($K_2Ti_4O_9$) and acrylic acid-grafted polypropylene fabric (PP-g-AA) as adsorbents capable of removing strontium from aqueous solutions. $K_2Ti_4O_9$ showed the highest rate of strontium removal in the weak alkaline range, while the PP-g-AA increased strontium removal in the neutral range. Moreover, the adsorption capacity of the $K_2Ti_4O_9$ was not affected by the coexistence of K and Na ions, while the adsorption capacity decreased when Ca and Mg ions were present at the same concentration as that of strontium. When coexisted at the same concentration as strontium, Na, K, Ca, and Mg ions strongly reduced the adsorption capacity of the PP-g-AA. The results also indicated that the adsorption of strontium on $K_2Ti_4O_9$ was consistent with both the Langmuir and Freundlich adsorption isotherms. In contrast, the adsorption of strontium on the PP-g-AA was more consistent with the Langmuir isotherm model. Moreover, the adsorption equilibrium time of $K_2Ti_4O_9$ was generally 12 h, while that of the PP-g-AA was 5 h, indicating that the adsorption rates were consistent with the pseudo-second order kinetics model. $K_2Ti_4O_9$ and the PP-g-AA could be regenerated by simple washing with 0.5 N HCl.