• Title/Summary/Keyword: freshwater green alga

Search Result 18, Processing Time 0.023 seconds

Isolation of Total RNA from a Freshwater Green Alga, Zygnema cruciatum, Containing High Levels of Pigments

  • Han, Jong-Won;Yoon, Min-Chul;Lee, Key-Pyoung;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.125-129
    • /
    • 2007
  • Conventional methods for the isolation and purification of mRNA from Zygnema were unsuccessful because of its high amount of pigments and RNA interactive molecules. In particular, pigments were difficult to remove using conventional protocols because they interacted with RNA during pulverization of the materials. This resulted in total degeneration of RNA in two to three hours. To alleviate this problem, we developed an isolation method that utilized DEAE-cellulose resin. The pigments bound to DEAE anion exchange resin and separated from the RNA. Purified total RNA showed an yield of 50 μg per 100 mg of tissue with this method. The amplified 2nd strand cDNA was distributed 300 bp and over.

Effects of Nutrient Levels on Cell Growth and Secondary Carotenoids Formation in the Freshwater Green Alga, Chlorococcum sp.

  • Liu, Bei-Hui;Haizhang, Dao;Lee, Yuan-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.201-207
    • /
    • 2000
  • The freshwater green alga Chlorococcum sp. grew on NH_4^{+},{\;}NO_3^{-}$, urea, yeast extract, and peptone as the nitrogen source showing similar pattens of growth and secondary carotenoid (SC) production. However, the most suitable nitrogen source for the induction fo SC was urea. The dffects of nutrient levels (urea, phosphate, sulfate, ferrous iron, and salt) on growth and SC production were stydied by varying the concentration of each nutrient in batch cultures. High biomass production was achieved in cultures containing 20-28 mM urea, 4.8-10 mM phosphate, 1.6 mM sulfate, 70 mM phosphate, 1.6 mM sulfate, 170 mM NACl, and $50{\;}\mu\textrm{M}$ iron. The optimum concentrations of nutrients for biomass and for the SC accumulation in biomass were evaluated and the two media for achieving high biomass production and SC production were thus developed. The extent to which each parameter to stimulate the formation of SC in the alga were varied and the potentially improned SC prodution by manipulating the nutrient levels in the modified media were descussed.

  • PDF

The Combined Effects of Carbon Dioxide Concentration and Irradiation on Growth of the Green Alga Haematococcus pluvialis

  • Choe, Yun-Lee;Yun, Yeong-Sang;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.181-184
    • /
    • 2001
  • The biological fixation of carbon dioxide using microalgae have many advantages over chemicals and remove carbon dioxide simultaneously. A ketocarotenoid astaxanthin is hyper-accumulated in the green freshwater microalga, Haematococcus pluvialis. In the present study, the combine effects of carbon dioxide concentration and light intensity on the growth of H. pluvilais were investigated. The carbon dioxide concentration above 10% caused a severe inhibition and around 5% is optimal for growth. Adaptation to high concentration of carbon dioxide enhanced the $CO_2$ tolerance. Specific growth rate calculated differently based upon cell number or dry weight because of the distinctive life cycle patterns of H. pluvialis : small-sized motile green cell and thick cell walled red cyst cell. Based on the light dependence of H. pluvialis, internally illuminated air-lift photobioreactor was designed and operated. Gradual increase of light supply gave more active growth and more effective productivity of astaxanthin than constant light supply.

  • PDF

Polymorphic stages of the fresh water blue-green alga, Gomphosphaeria aponina

  • Dwivedi, V.K.;Tandon, Richa;Tiwari, G.L.
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.115-120
    • /
    • 2010
  • The natural growth of a population of Gomphosphaeria aponina Kutzing (Chroococcales, Cyanoprocaryota) was studied in a cemented freshwater tank in Allahabad, India. This population appeared to be a polymorphic species. Different species of the genus Gomphosphaeria have been segregated based on morphological features of colonies, cells and mucilage. However, these features are not well defined for different species. Our observations revealed many feature variations and, interestingly, certain features that have been described for different Gomphosphaeria species were seen in a single population. In this study, records of such variable morphological features were possible due to the availability of numerous specimens and continuous observations for more than two years. Further, this study revealed two points: (i) more detailed morphological studies are required both from nature as well as in culture to identify critical differences among the species, and (ii) molecular characterization of taxa appears to be necessary for final species settlement.

Ornamented Resting Spores of a Green Alga, Chlorella sp., Collected from the Stone Standing Buddha Statue at Jungwon Miruksazi in Korea

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.295-298
    • /
    • 2005
  • The growth of subaerial microalgae on historic buildings or various cultural properties causes discoloration and physico-chemical deterioration of the surfaces. We collected a subaerial chlorophyte, Chlorella sp., from the stone Standing Buddha statue at Jungwon Miruksazi, which is a national treasure of Korea, and found dormant, thickwalled spores with regular pentagonal ornamentation along with the vegetative Chlorella cells. The morphology of Chlorella resting spores was compared to that of the other green algal resting cells. The ornamented spores and smooth-walled vegetative cells revived in 2 weeks in a liquid freshwater medium and started reproduction by autospores. To our knowledge, the ability of Chlorella to form ornamented dormant spores in drought condition was not previously recorded. The ornamentation of spores would supplement taxonomic characteristics of this genus.

Cytoskeletal changes during nuclear and cell division in the freshwater alga Zygnema cruciatum (Chlorophyta, Zygnematales)

  • Yoon, Min-Chul;Han, Jong-Won;Hwang, Mi-Sook;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Cytoskeletal changes were observed during cell division of the green alga Zygnema cruciatum using flourescein isothiocynate (FITC)-conjugated phallacidin for F-actin staining and FITC-anti-$\alpha$-tubulin for microtubule staining. Z. cruciatum was uninucleate with two star-shaped chloroplasts. Nuclear division and cell plate formation occurred prior to chloroplast division. Actin filaments appeared on the chromosome and nuclear surface during prophase, and the F-actin ring appeared as the cleavage furrow developed. FITC-phallacidin revealed that actin filaments were attached to the chromosomes during metaphase. The F-actin ring disappeared at late metaphase. At telophase, FITC-phallacidin staining of actin filaments disappeared. FITC-anti-$\alpha$-tubulin staining revealed that microtubules were arranged beneath the protoplasm during interphase and then localized on the nuclear region at prophase, and that the mitotic spindle was formed during metaphase. The microtubules appeared between dividing chloroplasts. The results indicate that a coordination of actin filaments and microtubules might be necessary for nuclear division and chromosome movement in Z. cruciatum.

Identification and Isolation of Differentially Expressed Gene in Response to Cold Stress in a Green Alga, Spirogyra varians (Zygnematales)

  • Han, Jong-Won;Yoon, Min-Chul;Lee, Key-Pyoung;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2007
  • The expression of genes responding to cold stress in a freshwater alga, Spirogyra varians, was studied by using differential expression gene (DEG) method. A gene strongly up-regulated in 4°C was isolated and designated as SVCR2 (Spirogyra varians cold regulated) gene. The cDNA encoding SVCR2 was cloned using λZAP cDNA library of Spirogyra varians. The deduced amino acid had a sequence similarity with trans-membrane protein in Arabidopsis thaliana (Q9M2D2, 52.7%). Northern blot analysis demonstrated that transcript level of SVCR2 increased about 10 fold under low temperature (4°C), compared with that cultured at warm (20°C) conditions. The expression of SVCR2 was also affected by light conditions. When the plants were exposed to high light (HL) (1200 μmol photon m–2 s–1), the expression of SVCR2 began within 2 hrs. This gene expression lasted for 4 hrs and decreased afterwards. Under the blue light (470 nm) condition, the expression of this gene was induced in same way as HL treatment, even under less than 100 μmol photon m–2 s–1. But red light (650 nm) and UV-A irradiation did not affect the expression of SVCR2.

Isolation and characterization of two phototropins in the freshwater green alga, Spirogyra varians (Streptophyta, Zygnematales)

  • Lee, Ji Woong;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.235-244
    • /
    • 2017
  • Freshwater algae living in shallow waters have evolved various photomovement to stay in the optimum light condition for survival. Previous action-spectra investigations showed that Spirogyra filaments have phototropic movement in blue light. To decipher the genetic control of phototropic movement, two phototropin homologues were isolated from Spirogyra varians, and named SvphotA and SvphotB. Both phototropins have similar molecular structure consisted of two light-oxygen-voltage domains (LOV1, LOV2) and a serine / threonine kinase domain. SvphotA and SvphotB had 48.7% sequence identity. Phylogenetic analysis showed SvphotA and SvphotB belong to different clades suggesting early divergence, possibly before the divergence of land plants from the Zygnematales. Quantitative PCR and northern blot analysis showed that SvphotA and SvphotB responded differently to red and blue light. SvphotA was consistently expressed in the dark and in blue light, while SvphotB was expressed only when the plants were exposed to light. When the filaments were exposed to red light, SvphotA was significantly downregulated whereas SvphotB was highly upregulated. These results suggest that the two phototropins may have different roles in the photoresponse in S. varians.

The Behavior of a $CO_2$Fixation Process by Euglena Gracilis Z with a Photobioreactor (광반응기와 Euglena gracilis Z를 이용한 이산화탄소 고정화 공정의 거동 특성)

  • 신항식;채소용;황응주;임재림;남세용
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.644-648
    • /
    • 2000
  • Biological fixation of carbon dioxide using microalgae is known as an effective CO$_2$reduction technology. However, many environmental factors influence microalgal productivity. Optimal cultivation factors were determined for the green alga, Euglena gracilis Z, which offers high protein and vitamin E content for animal fodder. In batch culture in a photovioreactor, it was found that theinitial pH, temperature, CO$_2$concentration in air, and light intensity during the optimal cultivating conditions were 3.5, 27$^{\circ}C$, 5-10% and 520 ${\mu}$mol/㎡/s, respectively. When tap water and freshwater were used as cultivating media unsterilized tap water was found to be effective. A kinetic model was considered to determine the relationship between the specific growth rate and the light intensity. The half-velocity coefficient (K(sub)I) in the Monod model under photoautotrophic conditions was 978.9 ${\mu}$mol/㎡/s.

  • PDF

Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

  • Gomaa, Mohamed A.;Refaat, Mohamed H.;Salim, Tamer M.;El-Sayed, Abo El-Khair B.;Bekhit, Makhlouf M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.381-389
    • /
    • 2019
  • Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.