Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.9.9

Isolation and characterization of two phototropins in the freshwater green alga, Spirogyra varians (Streptophyta, Zygnematales)  

Lee, Ji Woong (Department of Biology, Kongju National University)
Kim, Gwang Hoon (Department of Biology, Kongju National University)
Publication Information
ALGAE / v.32, no.3, 2017 , pp. 235-244 More about this Journal
Abstract
Freshwater algae living in shallow waters have evolved various photomovement to stay in the optimum light condition for survival. Previous action-spectra investigations showed that Spirogyra filaments have phototropic movement in blue light. To decipher the genetic control of phototropic movement, two phototropin homologues were isolated from Spirogyra varians, and named SvphotA and SvphotB. Both phototropins have similar molecular structure consisted of two light-oxygen-voltage domains (LOV1, LOV2) and a serine / threonine kinase domain. SvphotA and SvphotB had 48.7% sequence identity. Phylogenetic analysis showed SvphotA and SvphotB belong to different clades suggesting early divergence, possibly before the divergence of land plants from the Zygnematales. Quantitative PCR and northern blot analysis showed that SvphotA and SvphotB responded differently to red and blue light. SvphotA was consistently expressed in the dark and in blue light, while SvphotB was expressed only when the plants were exposed to light. When the filaments were exposed to red light, SvphotA was significantly downregulated whereas SvphotB was highly upregulated. These results suggest that the two phototropins may have different roles in the photoresponse in S. varians.
Keywords
blue light; photomovement; phototropin; phylogenetic analysis; qPCR;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kami, C., Lorrain, S., Hornitschek, P. & Fankhauser, C. 2010. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91:29-66.
2 Kang, B., Grancher, N., Koyffmann, V., Lardemer, D., Burney, S. & Ahmad, M. 2008. Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta 227:1091-1099.   DOI
3 Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M. & Wada, M. 2002. Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829-832.   DOI
4 Kianianmomeni, A. & Hallmann, A. 2014. Algal photoreceptors: in vivo functions and potential applications. Planta 239:1-26.   DOI
5 Kim, G. H., Yoon, M. & Klotchkova, T. A. 2005. A moving mat: phototaxis in the filamentous green algae Spirogyra (Chlorophyta, Zygnemataceae). J. Phycol. 41:232-237.   DOI
6 Klochkova, T. A., Jung, S. & Kim, G. H. 2016. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. 29:371-379.
7 Labuz, J., Sztatelman, O., Banas, A. K. & Gabrys, H. 2012. The expression of phototropins in Arabidopsis leaves: developmental and light regulation. J. Exp. Bot. 63:1763-1771.   DOI
8 Li, F. W., Rothfels, C. J., Melkonian, M., Villarreal, J. C., Stevenson, D. W., Graham, S. W., Wong, G. K., Mathews, S. & Pryer, K. M. 2015. The origin and evolution of phototropins. Front. Plant Sci. 6:637.
9 Livak, K. J. & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}CT$ method. Methods 25:402-408.   DOI
10 Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H. & Deng, X. W. 2005. Organ-specific expression of Arabidopsis genome during development. Plant Physiol. 138:80-91.   DOI
11 Ojima, S. & Tanaka, K. 1970. Studies on the growth and development in Spirogyra. I. Diurnal movement of the filaments. Sci. Rep. Hirosaki Univ. 17:15-26.
12 Onodera, A., Kong, S. G., Doi, M., Shimazaki, K., Christie, J., Mochizuki, N. & Nagatani, A. 2005. Phototropin from Chlamydomonas reinhardtii is functional in Arabidopsis thaliana. Plant Cell Physiol. 46:367-374.   DOI
13 Prochnik, S. E., Umen, J., Nedelcu, A. M., Hallmann, A., Miller, S. M., Nishii, I., Ferris, P., Kuo, A., Mitros, T., Fritz-Laylin, L. K., Hellsten, U., Chapman, J., Simakov, O., Rensing, S. A., Terry, A., Pangilinan, J., Kapitonov, V., Jurka, J., Salamov, A., Shapiro, H., Schmutz, J., Grimwood, J., Lindquist, E., Lucas, S., Grigoriev, I. V., Schmitt, R., Kirk, D. & Rokhsar, D. S. 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223-226.   DOI
14 Shim, J., Shim, E., Kim, G. H., Han, J. W. & Zuccarello, G. C. 2016. Keeping house: evaluation of housekeeping genes for real-time PCR in the red alga, Bostrychia moritziana (Florideophyceae). Algae 31:167-174.   DOI
15 Song, S. H., Dick, B., Penzkofer, A., Pokorny, R., Batschauer, A. & Essen, L. O. 2006. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B. 85:1-16.   DOI
16 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.   DOI
17 Banas, A. K., Aggarwal, C., Labuz, J., Sztatelman, O. & Gabrys, H. 2012. Blue light signalling in chloroplast movements. J. Exp. Bot. 63:1559-1574.   DOI
18 Diehl, N., Kim, G. H. & Zuccarello, G. C. 2017. A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota). Algae 32:29-39.   DOI
19 Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.   DOI
20 Ermilova, E. V., Zalutskaya, Z. M., Huang, K. & Beck, C. F. 2004. Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420-427.
21 Han, J. H., Klochkova, T. A., Han, J. W., Shim, J. & Kim, G. H. 2015. Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica. Algae 30:303-312.   DOI
22 Han, J. W. & Kim, G. H. 2013. An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and $CO_2$ influx. J. Appl. Phycol. 25:1297-1307.   DOI
23 Han, J. W., Yoon, K. S., Jung, M. G., Chah, K. -H. & Kim, G. H. 2012. Molecular characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa (Chlorophyta). Algae 27:55-62.   DOI
24 Hoang, N., Bouly, J. P. & Ahmad, M. 2008. Evidence of a lightsensing role for folate in Arabidopsis cryptochrome blue-light receptors. Mol. Plant 1:68-74.   DOI
25 Huala, E., Oeller, P. W., Liscum, E., Han, I. S., Larsen, E. & Briggs, W. R. 1997. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120-2123.   DOI
26 Huang, K. & Beck, C. F. 2003. Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 100:6269-6274.   DOI
27 Huang, K., Merkle, T. & Beck, C. F. 2002. Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. Physiol. Plant. 115:613-622.   DOI
28 Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.   DOI
29 Im, C. S., Eberhard, S., Huang, K., Beck, C. F. & Grossman, A. R. 2006. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J. 48:1-16.   DOI
30 Inoue, S., Kinoshita, T. & Shimazaki, K. 2005. Possible involvement of phototropins in leaf movement of kidney bean in response to blue light. Plant Physiol. 138:1994-2004.   DOI
31 Jain, M., Sharma, P., Tyagi, S. B., Tyagi, A. K. & Khurana, J. P. 2007. Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Sci. 172:164-171.   DOI
32 Jarillo, J. A., Gabrys, H., Capel, J., Alonso, J. M., Ecker, J. R. & Cashmore, A. R. 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952-954.   DOI
33 Hofmeister, W. 1874. Uber die Bewegungen der Faden der Spirogyra princeps. Nat. Wurttemb 30:211-226.
34 Kagawa, T., Kasahara, M., Abe, T., Yoshida, S. & Wada, M. 2004. Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol. 45:416-426.   DOI
35 Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K. & Wada, M. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138-2141.   DOI
36 Tanaka, K., Kitazawa, S., Sasaki, T., Ooshima, N. & Yamada, T. 1986. Studies on the growth and development in Spirogyra. VI. Phototropic response of Spirogyra filaments. Planta 167:19-25.   DOI
37 Suetsugu, N., Mittmann, F., Wagner, G., Hughes, J. & Wada, M. 2005. A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc. Natl. Acad. Sci. U. S. A. 102:13705-13709.   DOI
38 Suetsugu, N. & Wada, M. 2007. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants. Photochem. Photobiol. 83:87-93.