• Title/Summary/Keyword: fresh concrete density

Search Result 46, Processing Time 0.018 seconds

Experimental Review on Application of Lightweight UHPC as Repair Mortar and Cement Panel (경량 UHPC의 보수용 모르타르 및 시멘트 패널로서의 활용 가능성에 대한 실험적 검토)

  • Jae Sung Ahn;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.210-217
    • /
    • 2023
  • Various performances of ultra-high performance concrete (UHPC) applied with microplastics and expanded polystyrene (EPS) beads were evaluated. CompressIve and flexural strength, performance after ignition, flow-down in fresh state, and effective bond strength were evaluated. Designed weight of the cement panel with these mixtures was calculated based on the flexural strength. As a result of the experiments, it was confirmed that the EPS could reduce the density of UHPC with largest range. By maximum addition of EPS beeds, the density of UHPC decreased to 1300 kg/m3, and the compressive and flexural strengths for this mixtures were in ranges of 20-30 MPa and 15-20 MPa, respectively. On the other hand, lightest cement panel could be designed with UHPC having a density ranges about 2.0 g/cm3.

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.

Use of e-plastic waste in concrete as a partial replacement of coarse mineral aggregate

  • Sabau, Marian;Vargas, Johnny R.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2018
  • The accelerated increase of the population growth rate in the world and the current lifestyle based on consumerism considerably increased the amount of waste generated by the human activity. Specifically, e-plastic waste causes significant damage to the environment because of its difficult degradation process. This paper aims to establish the feasibility of using e-plastic waste in concrete as a partial replacement of coarse mineral aggregate. Considering a control mix without e-plastic waste designed for a compressive strength of 21 MPa, tests on concrete mixes with 40, 50 and 60% of e-plastic waste aggregate to determine the fresh and hardened properties were carried out. A reduction in the compressive strength as the percentage of e-plastic waste increases was observed, the maximum reduction being 44% with respect to the control mix. In addition, a significant reduction as much as 22% in the density of the concrete mixes with e-plastic waste was recorded, which means that lighter elements can be produced with this type of concrete. Two new equations based on regression analysis of the experimental data from this study were proposed. These equations estimate the reduction in the compressive strength of concrete mixes with e-plastic waste aggregate at 14 and 28 days. A cost analysis and a practical alternative to introduce this waste material into the market are also presented.

Estimation Error and Reliability of Measuring Unit Water Content Test Methods for Fresh Concrete Depending on Mix Design Factors at the Laboratory Level (실험실 수준에서 배합변수별 굳지 않은 콘크리트 단위수량 실험방법의 추정오차 및 신뢰성 검토)

  • Park, Min-Yong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.101-110
    • /
    • 2022
  • In this study, water content tests were performed on various fresh concretes subjected to different binder compostions to review the estimation errors and reliability of water content test methods. Micro-oven drying method, air-meter method, capacitance method and microwave penetration method were used to estimate water content of fresh concrete. Errors in water content estimation were analyzed by each test method. Regardless of the test method of water content, the estimation error was less than 5 %, and in the case of the test using mortar, the error in the estimation value was relatively large. In addition, based on the test results of water content of various concrete, the probability density function in which the estimation error for each test method becomes the population was analyzed. Water content test methods of fresh concrete which using concrete samples showed high estimate reliability of 97 % within the estimation error range of ± 10 kg/m3. On the other hand, the reliability of water content test method using mortar samples was lower.

Investigation on the Properties of the Lightweight Foamed Concrete in Response to Fine Grains Contents (미세립자 혼입율 변화에 따른 경량기포 콘크리트 특성분석)

  • Choi, Sung-Yong;Park, Yong-Kyu;Jeong, Kwang-Bok;Kim, Sung-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.47-50
    • /
    • 2007
  • This study investigates the properties of light weight foamed concrete (LWC) designed with various content of fine grains (FG). Test showed that LWC containing diverse powder materials with addition, more than 15% of FG, tended to decrease the fluidity of fresh concrete. 10% of FG content in LWC exhibited 4mm in sinking depth, which is the lowest value. This value dramatically increased at more than 15% of addition. However the concrete incorporating LSP proportionally increased the sinking depth in overall. As for the strength, the values of all specimens were under standardization of KS, except for the concrete adding 5 and 10% of FG. Apparent density of LWC showed the lowest value when used 10% of FG which was satisfied the 0.5 grade in KS. For the thermal conductivity, it was also indicated at 0.5 grade in KS, which is under $0.160W/(m{\cdot}k)$. In conclusion, it is demonstrated that adding 10% of FG in LWC was effective in the aspects of recycling of materials, cost effectiveness and quality.

  • PDF

Valorization of marble's waste as a substitute in sand concrete

  • Ouassila, Boughamsa;Houria, Hebhoube;Leila, Kherref;Mouloud, Belachia;Assia, Abdelouahed;Chaher, Rihia
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • The recovery of waste proves a solution with two impacts: the environmental impact by the reduction of pollution and the gain of the occupied space by this waste, and the economic impact by the use of these lasts in the building and in the area of public works. The present research consists in recovering a waste marble (thrown powder exposed to the different meteorological phenomena) generated by the quarry marble of Fil-fila, located at the east side of Skikda in the north-east of Algeria, and add it, as sand in the composition of sand concrete. To carry out this research, we analyzed the evolution brought by the substitution of ordinary sand by marble waste sand, with 25%, 50%, 75% and 100% on the properties in the fresh state (density, workability and air content) and in the cured state (compressive strength, tensile strength, surface hardness and sound velocity). For durability we tested water absorption by immersion and chloride penetration. The results obtained are compared with control samples of 0% of substitution rate. In order to have a good filling of the voids in the granular skeleton; we added a quantity of limestone recycled fines from the quarries and for a good workability a super-plasticizing additive. The results showed that the partial substitution modified both the fresh and the hardened characteristics of the tested concretes, the durability parameters also improved.

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.