• 제목/요약/키워드: fresh concrete

검색결과 667건 처리시간 0.025초

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가 (Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete)

  • 이봉춘;정상화;김주형;권성준
    • 콘크리트학회논문집
    • /
    • 제23권3호
    • /
    • pp.311-320
    • /
    • 2011
  • 화력발전 부산물 중 플라이애쉬는 포졸란 반응을 활용하여, 콘크리트 혼화재로 적극적으로 사용되고 있으나, 바텀애쉬는 주로 매립되어 재활용이 많이 요구되는 실정이다. 매립회에는 바텀애쉬와 플라이애쉬가 혼재되어 있는데, 이 연구에서는 국내 6개 발전소 매립회를 수집하고 5가지 치환율(10%, 20%, 30%, 50%, 70%)을 고려하여 매립회의 공학적 특성과 매립회 콘크리트의 역학적/내구 성능이 평가되었다. 골재 실험으로는 조립률, 밀도 및 흡수율, 안전성, 염화물 함유량, 유해이온 함유량, 알칼리 골재 반응 등이 수행되었으며, 매립회 콘크리트에 대해서는 경화 전 특성으로 슬럼프, 공기량 시험을, 경화된 콘크리트에 대해서는 압축강도, 건조수축, 염해 저항성 및 확산계수, 촉진 탄산화 실험, 동결 융해 실험 등이 수행되었다. 매립회는 일반 잔골재보다 큰 흡수율과 작은 밀도를 가지고 있었으나, 콘크리트 골재로 사용 가능하며, 매립회 콘크리트 역시 일반 콘크리트에 해당하는 적절한 성능을 확보하고 있었다. 특히 치환율이 증가함에 따라 강도는 증가하였으며, 우수한 탄산화 저항성을 확인하였다. 최종적으로 실험 결과를 정량적으로 등급화 하여 가장 우수한 매립회 및 매립회 콘크리트의 적용 제한 사항을 도출하였다. 이 연구는 매립회 및 매립회 콘크리트의 공학적 특성을 중심으로 다루고 있으며, 실제 구조물에 대한 모형 실험을 통한 적용성 평가가 추가로 진행될 것이다.

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic;Ozer Zeybek;Ali Ihsan Celik;Essam Althaqafi;Md Azree Othuman Mydin;Anmar Dulaimi;Memduh Karalar;P. Jagadesh
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.595-608
    • /
    • 2024
  • In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

폴리머가 프리믹스 타입의 보수용 모르타르의 성질에 미치는 영향 (Effects of Polymer in Properties of Pre-mixed Type Mortar for Concrete Repair)

  • 송형수;이진용;민창식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.153-159
    • /
    • 2006
  • 현재, 폴리머는 보수용 모르타르의 혼화재료로 주로 사용되고 있으며, 이러한 보수용 모르타르에는 폴리머 이외에 각종 혼화재료가 첨가되어 있다. 본 연구에서는 폴리머의 배합비율에 따라 보수용 모르타르에 미치는 영향과 동일한 EVA계 폴리머가 제조사가 다른 제품에 따라 미치는 영향을 비교하고자 모르타르의 굳기 전 특성 및 역학적 특성에 대하여 시험을 통하여 분석하였다. 시험결과 보수용 모르타르에 폴리머의 배합비율이 증가될수록 역학적 특성(압축강도, 휨 강도, 부착강도)이 개선되었으며, 또한 건조수축도 증가하였다.

공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성 (Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar)

  • 한천구;강수태;고경택;한창평
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.13-19
    • /
    • 2006
  • 본 연구는 기존연구에서 개발된 저수축 고성능 콘크리트의 기초적 물성과 공시체 단면크기 변화 및 철근구속에 따른 수축특성에 대하여 검토한 것이다. 굳지 않은 콘크리트의 특성으로, 팽창재와 수축저감제를 사용한 최적배합의 경우 콘트롤에 비해 유동성이 저하하여 SP제 사용량이 증가하였고, 공기량은 증가하여 AE제 사용량이 감소하였다. 또한, 최적배합 콘크리트의 압축 및 인장강도는 콘트롤과 비교하여 다소 크게 나타났다. 공시체크기에 따른 수축특성으로, 건조수축 길이변화율은 공시체 단면치수가 클수록 적게 발생하였으며, 자기수축은 공시체 크기변화, 측정방법별에 따라 큰 영향이 없는 것으로 나타났다. 철근구속에 따른 수축특성으로, 철근구속 공시체에서의 철근변형은 철근비가 증가할수록 감소하였고, 자기수축응력은 증가하였으며, 배합별에 따라서는 최적배합의 경우 콘트롤과 비교하여 70% 정도로 크게 저감되게 나타났다.

콘크리트 온도 측정을 위한 거푸집 일체형 무선센서네트워크 장치 개발 (Development of Integrated Wireless Sensor Network Device with Mold for Measurement of Concrete Temperature)

  • 이성복;박성식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.129-136
    • /
    • 2012
  • 본 연구는 타설 콘크리트의 온도를 무선센서 방식으로 현장에서 직접 간편하게 계측할 수 있는 장치를 개발하고, 무선 전송네트워크시스템을 통하여 현장사무실 및 본사 등에서 실시간 효율적 온도이력관리를 할 수 있는 시스템을 구축하는데 목적이 있다. 실험결과, 우선 무선센서네트워크시스템의 기본이 되는 온도센서는 콘크리트 타설시 안정적으로 측정될 수 있도록 무선방식의 막대타입의 스텐레스 프로브형으로 제작하였으며, 거푸집에서의 탈부착이 간편하고 장기간의 내장전력공급이 가능한 거푸집일체형의 무선센서네트워크 장치를 개발하였다. 또한 무선센서네트워크시스템의 구성은 센서노드와 라우터, 게이트웨이 및 CDMA 통신방식으로 구성하였으며, 콘크리트의 동일한 양생조건 및 상이한 양생조건에서 온도를 측정한 결과, 기존의 유선방식과 동일한 온도분포를 보였다. 향후, 개발된 무선센서네트워크 장치를 현장에서 사용할 경우, 현장 사무실에서의 정량적인 콘크리트 온도관리가 효율적으로 이루어 질 것으로 판단되며, 감리 감독업무의 생산성 향상과 더불어 전반적인 콘크리트 구조체의 품질에 크게 기여할 것으로 판단된다.