• Title/Summary/Keyword: fresh and hardened properties

Search Result 262, Processing Time 0.022 seconds

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.

Utilization of Waste Glass Micro-particles in Producing Self-Consolidating Concrete Mixtures

  • Sharifi, Yasser;Afshoon, Iman;Firoozjaei, Zeinab;Momeni, Amin
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.337-353
    • /
    • 2016
  • The successful completion of the present research would be achieved using ground waste glass (GWG) microparticles in self-consolidating concrete (SCC). Here, the influences of GWG microparticles as cementing material on mechanical and durability response properties of SCC are investigated. The aim of this study is to investigate the hardened mechanical properties, percentage of water absorption, free drying shrinkage, unit weight and Alkali Silica Reaction (ASR) of binary blended concrete with partial replacement of cement by 5, 10, 15, 20, 25 and 30 wt% of GWG microparticles. Besides, slump flow, V-funnel, L-box, J-ring, GTM screen stability, visual stability index (VSI), setting time and air content tests were also performed as workability of fresh concrete indicators. The results show that the workability of fresh concrete was increased by increasing the content of GWG microparticles. The results showed that using GWG microparticles up to maximum replacement of 15 % produces concrete with improved hardened strengths. From the results, when the amount of GWG increased there was a gradual decrease in ASR expansion. Results showed that it is possible to successfully produce SCC with GWG as cementing material in terms of workability, durability and hardened properties.

Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes

  • Eisa, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The use of sustainable technologies such as supplementary cementitious materials, and/or recycled post-consumer environmental wastes is widely used in concrete industry in the last decade. This paper presents the results of a laboratory investigation of normal concrete containing sustainable technologies. Twenty one mixtures (21) were prepared with different combinations of silica fume, fly ash, olive's seed ash, and corncob ash (CCA). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Based on the results obtained in this study and the analyses conducted, the following observations were drawn: replacing the cement by olive's seed ash or CCA has a significant effect on fresh concrete workability. Olive's seed ash increased the slump by more than 200 % compared to the control mixtures. The compressive strength of mixtures containing olive's seed ash showed by 45 and 75 % decrease compared to the control mixtures. The 28 days compressive strength of mixtures produced by CCA of 10 % replacement decreased by 41 % compared to the control mixture.

The Effective Control of Hot Weather Concreting by Optimum Mineral and Chemical Admixtures (혼화재 및 혼화제의 조절에 의한 서중 콘크리트의 효과적 관리)

  • Lee, Dongyule;Ham, Suyun;Oh, Taekeun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.59-66
    • /
    • 2015
  • The undesirable effects of elevated external temperatures at placement on the properties of the fresh and hardened concrete are discussed briefly, and the possible use of the mineral admixtures to mitigate them and the association with water-reducing and retarding admixtures in terms of the mix design which are critical for minimizing slump loss and entrained air loss are examined in this study. To investigate the effects of such the mineral and chemical admixtures on the fresh and hardened properties of concrete exposed to high temperature, a series of concrete mixtures subjected to the high temperature were carried out and then fresh and hardened properties of the mixtures were analyzed and evaluated. Based on the results, new guide lines concerning the appropriate admixtures for hot weather are suggested.

Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume

  • Ahmad, Subhan;Umar, Arshad;Masood, Amjad;Nayeem, Mohammad
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • This paper evaluates the workability and hardened properties of self-compacting concrete (SCC) containing silica fume as the partial replacement of cement. SCC mixtures with 0, 2, 4, 6, 8 and 10% silica fume were tested for fresh and hardened properties. Slump flow with $T_{500}$ time, L-box and V-funnel tests were performed for evaluating the workability properties of SCC mixtures. Compressive strength, splitting tensile strength and modulus of rupture were performed on hardened SCC mixtures. Experiments revealed that replacement of cement by silica fume equal to and more than 4% reduced the slump flow diameter and increased the $T_{500}$ and V-funnel time linearly. Compressive strength, splitting tensile strength and modulus of rupture increased with increasing the replacement level of cement by silica fume and were found to be maximum for SCC mixture with 10% silica fume. Further, residual hardened properties of SCC mixture yielding maximum strengths (i.e., SCC with 10% silica fume) were determined experimentally after heating the concrete samples up to 200, 400, 600 and $800^{\circ}C$. Reductions in hardened properties up to $200^{\circ}C$ were found to be very close to normal vibrated concrete (NVC). For 400 and $600^{\circ}C$ reductions in hardened properties of SCC were found to be more than NVC of the same strength. Explosive spalling occurred in concrete specimens before reaching $800^{\circ}C$.

Experimental investigation on hardened properties of recycled coarse aggregate concrete

  • Shohana, Shanjida A.;Hoque, Md. I.;Sobuz, Md. H.R.
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.369-379
    • /
    • 2020
  • Reduction of disposal of waste materials due to construction demolition has become a great concern in recent decades. The research work presents the hardened properties of concrete where the partial substitution of recycled coarse aggregate with natural aggregate in amount of 0%, 10%, 30% and 50%. By using different mixed proportions, fresh and hardened properties of concrete were conducted for this investigation. These properties were compared with control concrete. It can be seen that all of the hardened properties of concrete were decreased with the increasing percentage of recycled aggregate in concrete mixes. It was noticed that up to 30% recycled aggregate replacement can be yielded the optimum strength when it used in normal concrete. Finally, it can be said that disposed recycled concrete utilizing as a partial replacement in natural aggregate is a great way to reuse and reduce environmental hazards which achieve sustainability approach in the construction industry.

Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control (마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현)

  • Kim, Yun-Yong;Kim, Jeong-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

Experimental evaluation of the performance of self-compacting concrete contains nano clay and nano egg shell

  • Hilal, Nahla N.;Hadzima-Nyarko, Marijana
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.349-360
    • /
    • 2022
  • The rising prices of landfills and the lack of cement production are motivating researchers to be more interested in using wastes to produce concrete mixtures materials. The use of waste materials such as eggshell and matakoline waste not only reduces landfill costs and space, but also reduces the cost of cement production for the concrete mixture. However, recycling waste materials has become critical in order to effectively manage environmental sustainability. The purpose of this paper is to investigate the appropriate properties of self-compacting concrete (SCC) by incorporating waste materials such as crushed ceramics as coarse aggregate and nano egg shell (NES) and nanoclay (NC) as cement replacements. Fresh properties of SCC, such as segregation, flow time and diameter, V-funnel, H2/H1 ratio, and fresh unit weight of concrete mixtures, as well as hardened properties, such as 7, 14, and 28 days compressive strength and 28 and 90 days flexural strength, were measured for this purpose. The presence of NC in the SCC mixture enhanced the compressive strength of the concrete when 5% of NES was added or in the case without the addition of NES compared to the control mixture. The flexural strength enhanced with the incorporation of NC in the SCC increased the flexural strength of the concrete compared to the control mixture, but the incorporation of 5% of NES decreased the flexural strength compared to the mixtures with NC. These results prove the possibility of using crushed ceramics as the coarse aggregate, and NES and NC as substitutes for 5, 7, and 10% of the cement in SCC, because the properties of such SCC in hardened and fresh states are satisfactory.

A survey on the application of oxide nanoparticles for improving concrete processing

  • Khayati, Gholam Reza;Ghasabe, Hojat Mirzaei;Karfarma, Masoud
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.145-159
    • /
    • 2015
  • The evolution of nanotechnology provides materials with advance properties. It's a fast growing area of research to introduce the oxide nanoparticles into the cement pastes to improve their performance. The purpose of this paper is to review the effects of oxide nanoparticles (such as $SiO_2$, $TiO_2$, $Fe_2O_3$, $ZnO_2$, $Cr_2O_3$ and $Al_2O_3$) on both of hardened concrete properties (i.e., compressive strength, split tensile strength and flexural strength, water permeability, Abrasion resistance and pore structure of concrete) and fresh concrete properties (i.e., workability and setting time). Graphical representations of all these parameters were presented to facilitate the comparison of the effect of oxide nanoparticles on concrete processing. The paper also introduces some discussion about future work in this direction by identifying some open research area.

Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach

  • Sonebi, Mohammed;Abdalqader, Ahmed;Fayyad, Tahreer;Amaziane, Sofiane;El-Khatib, Jamal
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.347-360
    • /
    • 2022
  • Fiber-reinforced cementitious composites (FRCC) have emerged as a response to the calls for strong, ductile and sustainable concrete mixes. FRCC has shown outstanding mechanical properties and ductility where special fibres are used in the mixes to give it the strength and the ability to exhibit strain hardening. With the possibility of designing the FRCC mixes to include sustainable constituents and by-products materials such as fly ash, FRCC started to emerge as a green alternative as well. To be able to design mixes that achieve these conflicting properties in concrete, there is a need to understand the composition effect on FRCC and optimize these compositions. Therefore, this paper aims to investigate the influence of FRCC compositions on the properties of fresh and hardened of FRCC and then to optimize these mix compositions using factorial design approach. Three factors, water-to-binder ratio (w/b), mineral admixtures (total of fly ash and metakaolin by cement content (MAR)), and metakaolin content (MK), were investigated to determine their effects on the properties of fresh and hardened FRCC. The results show the importance of combining both FA and MK in obtaining a satisfactory fresh and mechanical properties of FRCC. Models were suggested to elucidate the role of the studied factors and a method for optimization was proposed.