• 제목/요약/키워드: frequency-based method

검색결과 6,105건 처리시간 0.036초

Thangka Image Inpainting Algorithm Based on Wavelet Transform and Structural Constraints

  • Yao, Fan
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1129-1144
    • /
    • 2020
  • The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.

An Accurate Design Method of Wideband BPF Considering Frequency Dependence of Inverters

  • Youna, Jang;Dal, Ahn
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents a design method for a wideband bandpass filter (BPF) which compensates for frequency dependency based on the image admittance and image phase. In the proposed method, new compensation methods for the admittance and phase are integrated with the conventional method. The proposed method improves the frequency shift and reduces the unwanted bandwidth when designing more than 20% of the Fractional Bandwidth (FBW), whereas the conventional method exhibits frequency degradation at only 10% FBW. The proposed design theory was verified by applying it to both lumped elements and distributed lines through circuit simulation and measurements without an optimization process. The measurement results demonstrate improvements in the frequency shift and target bandwidth. In the future, an accurate design method based on frequency dependence can be implemented for the next-generation broadband communication system applications.

A Characteristic Value Extraction Method for Content-Based Image Retrieval using Morphological Spatial Frequency

  • Jinwoo Eo;Lee, Dongjin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.42-45
    • /
    • 2002
  • A novel characteristic value extraction method based on morphological spatial frequency is proposed. Morphological spatial frequency defined by morphological pattern distribution function is introduced. Superiority of the method was proved for various images by experiment. Furthermore the fact that the proposed method does not need threshold to obtain binary image provides its applicability to content-based image retrieval.

  • PDF

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Direct Current Control Method Based On One Cycle Controller for Double-Frequency Buck Converters

  • Luo, Quanming;Zhi, Shubo;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.410-417
    • /
    • 2012
  • In this paper, a direct current control method based on a one-cycle controller (DCOCC) for double frequency buck converters (DF buck) is proposed. This control method can make the average current through the high frequency and low frequency inductors of a DF buck converter equal. This is similar to the average current control method. However, the design of the loop compensator is much easier when compared with the average current control. Since the average current though the high frequency and low frequency inductors is equivalent, the current stress of the high frequency switches and the switch losses are minimized. Therefore, the efficiency of the DF buck converter is improved. Firstly, the operation principle of DCOCC is described, then the small signal models of a one cycle controller and a DF buck converter are presented based on the state space average method. Eventually, a system block diagram of the DCOCC controlled DF buck is established and the compensator is designed. Finally, simulation and experiment results are given to verify the correction of the theory analysis.

Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

  • Ha, Tae Wook;Jeong, Jae Jun;Choi, Ki Yong
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1100-1108
    • /
    • 2017
  • A thermal-hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

FATIGUE ANALYSIS OF ELECTROMYOGRAPHIC SIGNAL BASED ON STATIONARY WAVELET TRANSFORM

  • Lee, Young Seock;Lee, Jin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권2호
    • /
    • pp.143-152
    • /
    • 2000
  • As muscular contraction is sustained, the Fourier spectrum of the myoelectric signal is shifted toward the lower frequency. This spectral density is associated with muscle fatigue. This paper describes a quantitative measurement method that performs the measurement of localized muscle fatigue by tracking changes of median frequency based on stationary wavelet transform. Applying to the human masseter muscle, the proposed method offers the much information for muscle fatigue, comparing with the conventional FFT-based method for muscle fatigue measurement.

  • PDF

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

IVA 기반의 2채널 암묵적신호분리에서 주파수빈 뒤섞임 문제 해결을 위한 후처리 과정 (Post-Processing of IVA-Based 2-Channel Blind Source Separation for Solving the Frequency Bin Permutation Problem)

  • 추쯔하오;배건성
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.211-216
    • /
    • 2013
  • The IVA(Independent Vector Analysis) is a well-known FD-ICA method used to solve the frequency permutation problem. It generally works quite well for blind source separation problems, but still needs some improvements in the frequency bin permutation problem. This paper proposes a post-processing method which can improve the source separation performance with the IVA by fixing the remaining frequency permutation problem. The proposed method makes use of the correlation coefficient of power ratio between frequency bins for separated signals with the IVA-based 2-channel source separation. Experimental results verified that the proposed method could fix the remaining frequency permutation problem in the IVA and improve the speech quality of the separated signals.

DFT 기반 페이저 연산 시 새로운 저역통과필터를 이용한 고주파 노이즈 경감 방법 (High Frequency Noise Reduction Method Using a Newly Designed Low-pass Filter in DFT-Based Phasor Estimation)

  • 백민우;강상희
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.898-904
    • /
    • 2017
  • DFT(Discrete Fourier Transform) is one of the most widely used method to estimate the phasor of a relaying signal. The harmonics are eliminated by the DFT. However, high frequency components, except for harmonics, are not removed and cause an error in DFT-based phasor estimation process. This paper suggests high frequency noise reduction method by using a newly designed low-pass filter to estimate a signal phasor. When selecting a stop-band cut-off frequency of the low-pass filter, high frequency components generated by faults are considered. To reduce the phasor estimation delay caused by a low-pass filter, this paper proposes a low-pass filter whose settling time is reduced. An adverse effect of high frequency noise on DFT-based phasor estimation is reduced. To evaluate the performance of the proposed method, signals which are collected under a fault condition at a 345[kV] transmission system modeled by EMTP-RV are used.