In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.
Journal of Korean Academy of Dental Administration
/
v.7
no.1
/
pp.21-28
/
2019
The purpose of this study was to investigate the association between wrong postures and pain during scaling and encourage dental hygienists and students to exercise scaling in a good position. After obtaining informed consent, 107 students (3rd and 4th grade students) who had an experience with scaling practice were enrolled. The questionnaire included three general items, four items related to the posture during scaling, and nine items related to pain management (total 16 items), for which the five-point Likert scale was used. Through the questionnaire, we examined the preference of posture during scaling, posture education during scaling, pain in each part during scaling, pain management, and pain management method. In the scaling exercise, 86.3% of the subjects were instructed on the correct posture, and 87.9% of the subjects perceived the possibility of inducing musculoskeletal disorders based on the scaling posture. The percentage of subjects who responded that they performed scaling in the correct posture was 33.6% and that of subjects who answered that they bowed or turned their head by more than 15° was 64.4%. Further, 45.7% of the subjects answered that they bent their shoulders, and 29.9% of the subjects answered that their postures were not parallel to the floor. Pain during scaling was still higher when they bent their head, they bent their waist, and they bent their wrist (p<0.05). During scaling, pain was most frequent in the fingers and hands (15%), followed by the neck (14%), shoulders (11.2%), waist (9.3%), and feet and legs (2.8%). The percentage of subjects who performed regular exercise (or stretching) to prevent pain was 29.9% and that of subjects who managed pain after scaling was 12.1%. Further, exercise (24.6%) and self-massage (20.3%) were highly used as the pain management methods, and the school practice was preferred to education media for pain management (79.4%). In the scaling practice, there was a training on pain management, but the frequency of practicing in the wrong posture was high. Moreover, pain increased upon practicing in an incorrect posture. Therefore, more in-depth and systematic education on the necessity and method of musculoskeletal disease management during scaling is required.
The Journal of the Convergence on Culture Technology
/
v.7
no.3
/
pp.583-589
/
2021
This study is a study on the development of virtual reality to prepare for the increase in disasters of households living with companion animals due to the increase of companion animals. The increase in single-person households and DINKs(Double Income, No Kid) along with the low birth rate and aging population is raising the risk of disasters caused by companion animals in particular. Among these disasters, there is an increase in the occurrence of fires primarily due to the raising of companion animals. Electric stove fires caused by pets are the most common fires. In particular, the frequency of electric stove fires caused by cats is the highest. Careful precautions by the owner are necessary to reduce fires caused by pets. Parenting of companion animals causes pet loss syndrome due to emotional exchange. There are injuries to pets in escalators and injuries to owners in elevators due to disasters caused by the owner's negligence. In order to reduce injuries on escalators and elevators, basic etiquette for using escalators and elevators with pets is required as basic etiquette. It is necessary to utilize virtual reality to reduce disasters caused by such companion animals. Virtual reality can be experienced without a physical space in advance training to overcome disasters, so real disaster cases can be experienced immersively. Therefore, learning how to reduce fires caused by companion animals, disasters caused by owner's negligence, and petloss syndrome through virtual reality will greatly contribute to disaster prevention and reduction of social costs.
The goal of this study is to investigate the current status of implementation of convergence education in elementary, middle, and high schools. A survey was conducted on 871 in-service teachers nationwide, and frequency analysis was conducted by school level. Key findings are as follows: first, 449 (51.5%) are found to practice convergence education. Second, the reason for implementing convergence education is the voluntary effort of teachers and the educational necessity for the future society. Third, it was found that convergence education is being implemented centered on science, arts, and social studies as a link between subjects in regular curriculum hours. Fourth, 270 (64%) of teachers who implemented convergence education in response to COVID-19 performed online convergence education, and experienced difficulties in creating class materials and communicating with students. Fifth, the excessive work of teachers, insufficient support for teacher training and research group activities, and lack of various convergence education programs are suggested as reasons for not implementing convergence education. This study hopes to provide implications for policy and implementation for revitalizing convergence education.
Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.3
/
pp.20-37
/
2023
Although traffic signal installations are continuously expanding, the effect of preventing traffic accidents remains unverified. Totally, 7,045 traffic accident data (such as signal violations) registered with TCS were manually searched for a 7-year period from 2013 to 2019 for 1,602 traffic signals in Daejeon Metropolitan City. The top 20 traffic accident intersections were identified, the traffic accident investigation records and field maps were viewed to compare the driving direction and signal phase of the violated vehicle, and the cause of the traffic accident was divided into insufficient signal operation design (operation) and driver negligence (intentional). Results of the analysis revealed that 75% of traffic accidents occurred in thru-left-turn traffic signals and overlap; moreover, extending the yellow time or operating all red signals due to countermeasures against traffic accidents occurring in yellow signals resulted in reduced traffic accidents. Data indicated that Permissive Left Turn requires improvement with the signal operation. In addition, since The Korean National Police Agency is not computerized for traffic accident sites and signal-related data, the lack of manpower necessitates improvement and utilization of TCS when establishing traffic accident prevention measures. It is believed that it will contribute to signal operation by analyzing vast amounts of data collected in the field and presenting improvement measures.
Purpose - In recent years, research has been conducted on the conflict resolution strategies of the franchise headquarters and the franchisees, but there is a lack of research on how the power structure and cultural factors play a role in resolving conflicts. From this perspective, this study is to examine the structural relationship between franchisors' cultural orientation and relationship power, and conflict resolution strategies, relationship trust, and relationship performance using. The findings of this study suggest how franchise headquarters should establish long-term relationship with franchisees and share information. Research design, data, methodology - The data were collected from April 1 to April 15, 2013. Because this study examined franchise industries from the franchisee perspective, we contacted franchisee store owner and managers located in Seoul and Gyeonggi Province. Interviewers trained contacted a total of 200 franchisees, and 196 franchisees responded. Out of 196 respondents, 13 respondents were deleted due to missing information. Thus, a total of 183 franchisee were used for this study. he data were analyzed using frequency analysis, confirmatory factor analysis, correlation analysis, and structural equational modeling with SPSS 24.0 and Amos 23.0 statistical program. Results - The results showed that cooperation orientation and relational power of franchisor had significant effects on conflict resolution strategies. Cooperating, obliging, and compromising strategies of conflict resolution strategy had significant effects on relationship trust. Also, relationship trust had significant effect on relationship performance. Conclusions - This study shows that the franchise headquarters and the franchisees share necessary information for common purposes and that continuous two-way communications play an important role in resolving conflicts. In other words, the result of this study suggests that if the franchise headquarters and the franchisee actively consider the position of the other party and strive to achieve the goal, conflict resolution may be more successful. In order to do this, the franchise headquarters will have to consider how to build and maintain continuous communication with the franchisees, and continuous education is also needed so that employees can have a cooperative attitude. However, since the culture of these organizations is not made up of simple staff training and is not formed within a short time, the CEO of the franchisee headquarters should take the lead in establishing a cooperative culture with the merchants over the long term.
This study focuses that the business starters can refer to this study, select better franchise headquarter and make the franchise member agreement. The most concerned part for the people who want to open franchise shop is what brand is reliable and safe to them. I have analyzed disclosure report that contains overall information of franchise headquarters and researched 300 franchise shops as sample. I drew the conclusion of the decision factors of franchise member agreement, overlooked demographical status by frequency analysis with SPSS 18.0 and performed disperse analysis to examine the decision factors of franchise member agreement and the difference between sex, service type, shop size and income level. In conclusion, the most concerned factor for the franchise agreement is sales management. Sex, shop size and income level are not meaningful factors, but the cost and training management factors are considered differently based on the service type. I hope 1) this study can be utilized for the franchise business starters judge and refer information level provided by the headquarters and make a successful franchise shop business. 2) this study can make solid relationship between franchise members and present a long term vision to them. Finally, this study can be a foundation to promote franchise field through making and supplementing the law of promoting proficient and good franchise headquarters and fairness of franchise transaction and franchise encouragement.
Thang Phan;Ha Phan Ai Nguyen;Cao Khoa Dang;Minh Tri Phan;Vu Thanh Nguyen;Van Tuan Le;Binh Thang Tran;Chinh Van Dang;Tinh Huu Ho;Minh Tu Nguyen;Thang Van Dinh;Van Trong Phan;Binh Thai Dang;Huynh Ho Ngoc Quynh;Minh Tran Le;Nhan Phuc Thanh Nguyen
Journal of Preventive Medicine and Public Health
/
v.56
no.4
/
pp.319-326
/
2023
Objectives: The coronavirus disease 2019 (COVID-19) pandemic has increased the workload of healthcare workers (HCWs), impacting their health. This study aimed to assess sleep quality using the Pittsburgh Sleep Quality Index (PSQI) and identify factors associated with poor sleep among HCWs in Vietnam during the COVID-19 pandemic. Methods: In this cross-sectional study, 1000 frontline HCWs were recruited from various healthcare facilities in Vietnam between October 2021 and November 2021. Data were collected using a 3-part self-administered questionnaire, which covered demographics, sleep quality, and factors related to poor sleep. Poor sleep quality was defined as a total PSQI score of 5 or higher. Results: Participants' mean age was 33.20±6.81 years (range, 20.0-61.0), and 63.0% were women. The median work experience was 8.54±6.30 years. Approximately 6.3% had chronic comorbidities, such as hypertension and diabetes mellitus. About 59.5% were directly responsible for patient care and treatment, while 7.1% worked in tracing and sampling. A total of 73.8% reported poor sleep quality. Multivariate logistic regression revealed significant associations between poor sleep quality and the presence of chronic comorbidities (odds ratio [OR], 2.34; 95% confidence interval [CI], 1.17 to 5.24), being a frontline HCW directly involved in patient care and treatment (OR, 1.59; 95% CI, 1.16 to 2.16), increased working hours (OR, 1.84; 95% CI,1.37 to 2.48), and a higher frequency of encountering critically ill and dying patients (OR, 1.42; 95% CI, 1.03 to 1.95). Conclusions: The high prevalence of poor sleep among HCWs in Vietnam during the COVID-19 pandemic was similar to that in other countries. Working conditions should be adjusted to improve sleep quality among this population.
In this study, we comprehensively analyze the generalization performance of various deep learning-based active sonar target classifiers when applied to small and imbalanced active sonar datasets. To generate the active sonar datasets, we use data from two different oceanic experiments conducted at different times and ocean. Each sample in the active sonar datasets is a time-frequency domain image, which is extracted from audio signal of contact after the detection process. For the comprehensive analysis, we utilize 22 Convolutional Neural Networks (CNN) models. Two datasets are used as train/validation datasets and test datasets, alternatively. To calculate the variance in the output of the target classifiers, the train/validation/test datasets are repeated 10 times. Hyperparameters for training are optimized using Bayesian optimization. The results demonstrate that shallow CNN models show superior robustness and generalization performance compared to most of deep CNN models. The results from this paper can serve as a valuable reference for future research directions in deep learning-based active sonar target classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.