• Title/Summary/Keyword: frequency responses

Search Result 2,005, Processing Time 0.028 seconds

Large deformations of a flexural frame under nonlinear P-delta effects

  • Afshar, Dana;Afshar, Majid Amin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.517-526
    • /
    • 2022
  • In this paper, nonlinear P-delta effects are studied on the seismic performance, and the modal responses of a flexural frame, considering large deformations. Using multiple scales method, the nonlinear differential equations of motion are estimated, and the nonlinear interactions between the frame's degrees of freedom are outcropped. The results of time and frequency domain analyzes of a dynamic model are examined under internal resonance cases, and the linear and nonlinear responses are investigated in each modal cases. Also, changing the modal responses with respect to the amplitude and frequency of the harmonic forces is evaluated. It is shown that the dominant absorption of energy is in the first natural frequency of the frame, in the case of earthquake excitation, and when a harmonic force is applied to the frame, the peaks of the frequency domain responses depending on the frequency of harmonic force are in the first, and second or third natural frequency of the structure.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Study on Seismic Responses for Base Isolated Structure Subjected to Earthquakes with Different Frequency Characteristics (주파수특성이 다른 입력지진에 대한 면진구조물의 지진응답연구)

  • Yoo, Bong;Lee, Jae-Han
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.224-231
    • /
    • 1997
  • A study on the seismic responses for a base isolated structure subjected to earthquakes with different frequency characteristics is peformed with time history analyses. Two types of seismic inputs are considered in these analyses, one is short period earthquakes such as El Centro(1940, NS), the other is long period ones such as Mexico(1985). The seismic responses of the base isolated structure depend on seismic input types and isolation frequencies. In this study the 0.5 Hz of isolation frequency for short period earthquakes remarkably reduces the acceleration responses, increases the relative displacements of isolator that are still within the proposed limits of isolator. However higher isolation frequency for long period earthquakes is more adequate to reduce the seismic responses of the base isolated structures; in the study 0.75 Hz is effective to Mexico 1985 earthquake.

  • PDF

An accurate substructural synthesis approach to random responses

  • Ying, Z.G.;Zhu, W.Q.;Ye, S.Q.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.47-75
    • /
    • 2011
  • An accurate substructural synthesis method including random responses synthesis, frequency-response functions synthesis and mid-order modes synthesis is developed based on rigorous substructure description, dynamic condensation and coupling. An entire structure can firstly be divided into several substructures according to different functions, geometric and dynamic characteristics. Substructural displacements are expressed exactly by retained mid-order fixed-interfacial normal modes and residual constraint modes. Substructural interfacial degree-of-freedoms are eliminated by interfacial displacements compatibility and forces equilibrium between adjacent substructures. Then substructural mode vibration equations are coupled to form an exact-condensed synthesized structure equation, from which structural mid-order modes are calculated accurately. Furthermore, substructural frequency-response function equations are coupled to yield an exact-condensed synthesized structure vibration equation in frequency domain, from which the generalized structural frequency-response functions are obtained. Substructural frequency-response functions are calculated separately by using the generalized frequency-response functions, which can be assembled into an entire-structural frequency-response function matrix. Substructural power spectral density functions are expressed by the exact-synthesized substructural frequency-response functions, and substructural random responses such as correlation functions and mean-square responses can be calculated separately. The accuracy and capacity of the proposed substructure synthesis method is verified by numerical examples.

Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System (구조물과 부계통간의 연계방법에 따른 지진응답 분석)

  • Jung, Kwangsub;Kwag, Shinyoung;Choi, In-Kil;Eem, Seunghyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

Research on Frequency Average Analysis of vibrational Power Flow Analysis (진동파워흐름해석의 주파수 평균해석에 대한 연구)

  • Lee, Jea-Min;Hong, Suk-Yoon;Park, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.971-977
    • /
    • 2005
  • Power Flow Analysis (PFA) is developed for the effective predictions of frequency-averaged vibrational response in medium-to-high frequency ranges. In PFA, the power coefficients of semi-infinite structure and for-field energy density are used to predict the vibrational responses of structures. Generally, at high frequencies, PFA can predict narrow-band frequency-averaged vibrational responses of built-up structures. However, in low- to medium frequency ranges, the dynamic responses obtained by PFA represent broad-band frequency-averaged vibrational energy densities. For the prediction of vibrational response variance in Power Flow Finite Element Method (PFFEM), the variances of input power and joint element matrix describing structural coupling relationship are derived. Finally, for the validity of developed formulation, numerical examples for two co-planer plates are performed and the vibrational response variance of the structure are compared with the results of classical and PFFEM solutions.

  • PDF

Dynamic response for electromechanical integrated toroidal drive to electric excitation

  • Xu, Lizhong;Hao, Xiuhong
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.635-650
    • /
    • 2007
  • In this paper, the equivalent exciting force caused by electric excitation is derived. By dividing load and displacement vectors into mean values and time-varying ones, the dynamic equations of the system are transformed into linear ones for time-varying portion of the displacements. The analytical equations of the forced time responses of the drive system to electric excitations are obtained. Using the Laplace transformation, the transfer function of the drive system is obtained. These equations are used to analyze the time and frequency responses of the drive system to the electric excitation. It is known that electric excitation can cause forced responses of the drive system, the total dynamic responses are decided by three phase exciting voltages, exciting frequency and natural frequencies of the drive system, and the drive parameters have obvious influence on the time and frequency responses.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

Comparison frequency responses of hairpin type superconducting and copper bandpass filters (헤어핀 초전도체 필터와 구리 필터의 주파수 응답비교)

  • 박정호;송석천;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.798-801
    • /
    • 2000
  • For the performance enhancement of communication system, high quality filters are required. Also a minimization of size of filter is required for the interation of devices in the limited area. Conventional metal filters made of copper can be substituted by high quality high temperature superconducting(HTS) films for better performance. Hairpin type filters have been designed with the center frequency 14 GHz for the size reduction. 3-pole and 4-pole filters centered at 14 GHz with the bandwidth of about 300 MHz were designed and fabricated. With the simulation results, the frequency responses showed low insertion loss and sharp skirts characteristics. The frequency response of HTS 14 GHz fi1ter was measured at 77 K and compared with the simulation results. We have compared YBCO filters and copper filters which were made with the same design rules. Simulated and measured frequency responses reveal that HTS YBCO hairpin type bandpass filters show better performance than copper filters.

  • PDF

Low Frequency Noise and It's Psychological Effects

  • Eom, Jin-Sup;Kim, Sook-Hee;Jung, Sung-Soo;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • Objective: This entire study has two parts. Study I aimed to develop a psychological assessment scale and the study II aimed to investigate the effects of LFN (low frequency noise) on the psychological responses in humans, using the scale developed in the study I. Background: LFN is known to have a negative impact on the functioning of humans. The negative impact of LFN can be categorized into two major areas of functioning of humans, physiological and psychological areas of functioning. The physiological impact can cause abnormalities in threshold, balancing and/or vestibular system, cardiovascular system and, hormone changes. Psychological functioning includes cognition, communication, mental health, and annoyance. Method: 182 college students participated in the study I in development of a psychological assessment scale and 42 paid volunteers participated in the study II to measure psychological responses. The LFN stimuli consisted of 12 different pure tones and 12 different 1 octave-band white noises and each stimulus had 4 different frequencies and 3 different sounds pressure levels. Results: We developed the psychological assessment scale consisting of 17 items with 3 dimensions of psychological responses (i.e., perceived physical, perceived physiological, and emotional responses). The main findings of LFN on the responses were as follows: 1. Perceived psychological responses showed a linear relation with SPL (sound pressure level), that is the higher the SPL is, the higher the negative psychological responses were. 2. Psychological responses showed quadric relations with SPL in general. 3. More negative responses at 31.5Hz LFN than those of 63 and 125Hz were reported, which is deemed to be caused by perceived vibration by 31.5Hz. 'Perceived vibration' at 31.5Hz than those of other frequencies of LFN is deemed to have amplified the negative psychological response. Consequently there found different effects of low frequency noise with different frequencies and intensity (SPL) on multiple psychological responses. Conclusion: Three dimensions of psychological responses drawn in regard to this study differed from others in the frequencies and SLP of LFN. Negative psychological responses are deemed to be differently affected by the frequency, SPL of the LFN and 'feel vibration' induced by the LFN. Application: The psychological scale from our study can be applied in quantitative psychological measurement of LFN at home or industrial environment. In addition, it can also help design systems to block LFN to provide optimal conditions if used the study outcome, .i.e., the relations between physical and psychological responses of LFN.