• Title/Summary/Keyword: frequency response analysis

Search Result 2,373, Processing Time 0.031 seconds

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

Seismic Response Analysis of Steam Turbine-Generator Rotor System (2nd Report, Application of Wavelet Analysis) (증기터빈$\cdot$발전기축계의 지진응답해석 (제2보 : 웨이블렛 해석의 적용))

  • 양보석;김병욱;김용한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.813-821
    • /
    • 1999
  • This paper presents the technique using wavelet analysis to solve the seismic response of a steam turbine-generator rotor system subjected to earthquake excitations. A brief review of the wavelet transform and its discretization, time-frequency representation of the earthquake wave and the seismic response for a rotor system is presented. The Daubechies wavelet has been used for describing the time-frequency characteristics of the input and the response in case of a recorded accelerogram during 1995 Hyogoken Nanbu earthquake. Also, the results in the wavelet domain has been illustrated through comparison with the time domain simulation results.

  • PDF

Investigating Natural Frequency Analysis and Measurement of Railway Vehicle to Avoid Resonance (공진회피를 위한 철도차량의 고유진동수 해석 및 측정에 관한 연구)

  • Hong, Do-Kwan;Jeong, Jae-Boo;Jung, Seung-Wook;Kim, Gyeong-Bae;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.713-719
    • /
    • 2012
  • This paper deals with the natural frequency analysis and two experiments to evaluate first twisting and bending natural frequency of railway vehicle. The KS R 9228 testing method is generally performed as pseudo FRF(frequency response function) which is widely used by two accelerometers. The exciting method is utilized using the load weight(1 ton release). The modal testing is used to verify KS R 9228 testing result and the natural frequency analysis result. The first twisting and bending natural frequency should be above 10 Hz by resonance which is mostly generated between bogie and vehicle frame exciting low frequency. The first twisting and bending natural frequency of railway vehicle are successfully verified between analysis and test.

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Analysis KTX wheel aged deterioration using Frequency Response Function (FRF를 이용한 KTX 차륜 경년변화 분석)

  • Yun, Cha-Jung;Lee, Sung-Uk;Jo, Kwang-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1453-1458
    • /
    • 2006
  • KTX Railway rolling stock wheel run its course to corrode, deteriorate and wear away through out the time. So it is natural that the performance and ability of wheel gets declined. The frequency characteristic analysis were accomplished to above trend and shock wave flow to wheels were examined. The result will be used to find Railway rolling stock wheel crack and maintenance method hereafter.

  • PDF

A Study on Analysis of Time Delay Model Using Autoregressive Method for Mobile Communication Channels (AR 모델을 이용한 이동 통신 채널의 시간 지연 해석기법에 관한 연구)

  • 이형권;류은숙;이종길
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.29-32
    • /
    • 1999
  • In this study, the time delay model were simulated using the well-known AR model. Frequency response of the time delay model can be obtained by mapping AR model to JTC model in the time domain. That is, from the few measurement data in JTC model, the channel frequency response can be obtained by the estimation of AR model parameters. From this channel frequency response, the time delay model can be obtained using Fourier transformation. To prove the validity of the suggested method, three models of JTC were shown and analyzed.

  • PDF

Experimental Study on Power Flow Analysis of Vibration of an Automobile Door (자동차 도어 진동의 파워흐름해석에 대한 실험적 연구)

  • Kil, H.G.;Lee, Y.H.;Lee, G.H.;Hwang, S.G.;Hong, S.Y.;Park, Y.H.;Seo, J.K.;Chae, G.S.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.782-785
    • /
    • 2006
  • The Power Flow Analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency range. In this paper, Power Flow Finite Element Method (PFFEM) based on PFA has been used to predict the vibration of an automobile door. The predicted results for the frequency response function of the door have been compared with corresponding experimental results. In the experiment, the automobile door has been divided into several subsystems and the loss factor of each subsystem has been measured. The input mobility at a source point has been also measured. The data for the loss factors and the input mobility have been used as the input data to predict the vibration of the automobile door with PFFEM. The frequency response functions have been measured over the surface of the door. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFFEM could be an effective tool to predict the structural vibration.

  • PDF

A Nonlinear Response Analysis of Tension Leg Platforms in Irregular Waves (불규칙파중의 인장계류식 해양구조물의 비선형 응답 해석)

  • Lee, Chang-Ho;Gu, Ja-Sam;Jo, Hyo-Je;Hong, Bong-Gi
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.33-42
    • /
    • 1998
  • In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: basic formulation and linear HFTD

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.517-530
    • /
    • 2014
  • Seismic ground response analysis is one of the most important issues in geotechnical earthquake engineering. Conventional seismic site response and free field analysis of layered soils does not consider the effect of surcharge mass which may be present on the top layer. Surcharge mass may develop extra inertial force to the soil and, hence, significantly affect on the results of seismic ground response analysis. Methods of analysis of ground response may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soil dynamic properties dependency to loading frequency are benefits of frequency domain analysis. In this part of the paper, seismic ground response is analyzed using transfer function method for soil layers considering surcharge mass on the top layer. Equation of motion, wave equation, is solved using amended boundary conditions which effectively take the impact of surcharge mass into account. A computer program is developed by MATLAB software based on the solution method developed for wave equation. Layered soils subjected to earthquake loading were numerically studied and solved especially by the computer program developed in this research. Results obtained were compared with those given by DEEP SOIL computer program. Such comparison showed the accuracy of the program developed in this study. Also in this part, the effects of geometrical and mechanical properties of soil layers and especially the impact of surcharge mass on transfer function are investigated using the current approach and the program developed. The efficiency and accuracy of the method developed here is shown through some worked examples and through comparison of the results obtained here with those given by other approaches. Discussions on the results obtained are presented throughout in this part.

Study on Vibration Fatigue Analysis of Automotive Battery Supporter (자동차 배터리 지지 구조의 진동 피로 해석에 대한 연구)

  • Ah, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.22-27
    • /
    • 2019
  • In this paper, the vibration load and analysis results for automotive battery supporter were performed to provide efficient vibration tolerance performance prediction methods for single-product vibration tolerance testing, and the major influencing factors and considerations for setting up single-unit vibration tolerance tests were reviewed. A common applicable standard load was applied to efficiently predict the performance of single-unit vibrations through the frequency response analysis technique. The results similar to test results can be predicted by checking vulnerable parts of the vehicle components for vibration loads and applying scale factor to standard loads. In addition, it was confirmed that the test conditions with a frequency generating the same durability severity as the endurance test are needed for accurate prediction of the durability of the single-unit vibration tolerance test conditions, and the acceleration and frequency with the conditions that there is no significant nonlinear phenomena in the vibration system are established during the single-unit vibration tolerance test conditions.