• Title/Summary/Keyword: frequency estimation

Search Result 2,555, Processing Time 0.025 seconds

A Robust OFDMA Channel Estimation Against Imperfect Synchronization (불완전 동기 환경에 강인한 OFDMA 채널 추정기법)

  • Chae Soo-Jin;Kim Eun-Ju;Kim Nak-Myeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.649-655
    • /
    • 2005
  • We propose a robust channel estimation method against imperfect synchronization in orthogonal frequency division multiple access (OFDMA) downlink systems. We address time and frequency synchronization, and the channel estimation at the same time, and try to minimize the error propagation from the time and frequency synchronization steps into the chailnel estimation. The simulation results show that the proposed channel estimation method outperforms the conventional algorithms by about 3dB, and circumvents the problem of mismatch among the synchronization tasks.

Study on Bearing and Frequency Target Motion Analysis for Passive Line Array SONAR Using Accumulative Batch Estimation (누적 일괄추정 기법을 이용한 수동 선배열 소나 방위 주파수 - 표적기동분석 연구)

  • Kim, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.788-796
    • /
    • 2016
  • Bearing and frequency measurements of TMA (Target Motion Analysis) in passive line array SONAR have lower bearing rate and frequency doppler, and are not detected or tracked continuously because of various ocean environments. This is a main reason to effect the TMA performance and it takes a long time to get TMA solutions. We propose the bearing and frequency TMA(BFTMA) using accumulative batch estimation to solve the TMA problem of line array passive SONAR. The accumulative batch estimation structure is based on MLE (Maximum Likelihood Estimation) but used accumulative measurements. The accumulative batch estimation is applied for the BFTMA with nonlinear Kalman filter to estimate the target range, speed and course. Simulation and sea data analysis were carried out to verify the performance and applicability of the proposed techniques.

Estimation of Fundamental Frequency Using an Instantaneous Frequency Based on the Symmetric Higher Order Differential Energy Operator (대칭구조를 갖는 일반적인 고차의 미분 에너지함수를 기반한 순간주파수를 이용한 음성의 기본주파수 추정)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2374-2379
    • /
    • 2011
  • The fundamental frequency of the voiced speech is estimated using the instantaneous frequency based on the symmetric higher order differential energy operator. The instantaneous frequency based on the symmetric higher order energy operator shows better frequency estimation result since it is aligned to the time instance of the signal. The speech is pre-processed by a lowpass filter to remove higher frequency components. Then, it is processed by the instantaneous frequency to obtain the fundamental frequency estimates. The symmetric higher order energy operator has been used as an indicator to determine the voiced/unvoiced speech. The fundamental frequency estimates are further processed by a moving average filter to obtain the monotonically changed estimates. The obtained fundamental frequency estimates have been compared with the spectrogram of the speech to confirm its accuracy.

Study on Advanced Frequency Estimation Technique using Gain Compensation

  • Park, Chul-Won;Shin, Dong-Kwang;Kim, Chul-Hwan;Kim, Hak-Man;Kim, Yoon-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • Frequency is an important operating parameter for the protection, control, and stability of a power system. Thus, it must be maintained very close to its nominal frequency. Due to the sudden change in generation and loads or faults in a power system, however, frequency deviates from its nominal value. An accurate monitoring of the power frequency is essential for optimum operation and prevention of wide area blackout. Most conventional frequency estimation schemes are based on the DFT filter. In these schemes, the gain error could cause defects when the frequency deviates from the nominal value. We present an advanced frequency estimation technique using gain compensation to enhance the DFT filter-based technique. The proposed technique can reduce the gain error caused when the frequency deviates from the nominal value. Simulation studies are performed using both the data from EMTP-RV software and the user-defined arbitrary signals to demonstrate the effectiveness of the proposed algorithm. Results show that the proposed algorithm achieves good performance under both steady state tests and dynamic conditions.

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

A Comparative Study on Frequency Estimation Methods

  • Kim, Yoon Sang;Kim, Chul-Hwan;Ban, Woo-Hyeon;Park, Chul-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this paper, a comparative study on the frequency estimation methods using IRDWT (Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and GCDFT(Gain Compensator Discrete Fourier Transform) is presented. The 345[kV] power system modeling data of the Republic of Korea by EMTP-RV is used to evaluate the performance of the proposed two kinds of RDWT(IRDWT and FRDWT) and GCDFT. The simulation results show that the frequency estimation technique based on FRDWT could be the optimal frequency measurement method, and thus can be applied to FDR(Fault Disturbance Recorder) for wide-area blackout protection or frequency measurement apparatus.

An Estimation method for Characteristic Parameters in a Low Frequency Signal Transformed by High Frequency Signals (고주파 신호에 의하여 변형된 저주파신호에서의 특성변수 추정 기법)

  • Yoo, Kyung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.86-88
    • /
    • 2002
  • An estimation method for the characteristic parameters in the low frequency signal is proposed in this paper. A low frequency signal is assumed to be modulated or distorted by high frequency terms. The algorithm proposed in this paper is designed to select set of local maximums in a successive manner, hence it is denoted as the iterative peak picking(IPP) algorithm. The IPP algorithm is operating in the time domain and is using only the comparison operation between two neighboring samples. Therefore, its computational complexity is very low and the delay caused by the computation is negligible, which make the real-time operation possible with economic hardware. The proposed algorithm is verified on the pitch estimation of speech signal and blood pulse estimation.

Measurements Preprocessing for Bearing and Frequency Target Motion Analysis (BFTMA를 위한 측정데이터 전처리 기법 연구)

  • Kim In-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.22-31
    • /
    • 2004
  • In this paper, the measurements preprocessing algorithm for the fading of bearing and frequency measurements is proposed, which can improve the performance of BFTMA(Bearing and Frequency Target Motion Analysis). The fading and detection relation between bearing and frequency are rigorously established for measurements preprocessing, and BFTMA can be carried out the estimation of target motion by using measurements preprocessing. Batch estimation with bearing and frequency using the proposed algorithm can be applied to estimate the initial target states despite of the fading of frequency measurement. Simulation results show that BFTMA using the proposed measurements preprocessing has superior estimation performance, compared with batch estimation using only bearing measurements.

DFT-based Power System Frequency Estimation using Two Digital Filters for Noise Effect Reduction (잡음영향의 저감을 위한 두 디지털 필터들의 사용에 의한 DFT 기반의 계통주파수 추정)

  • Hwang, Jin Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • The power system frequency plays an important role in monitoring and controlling the power system. The frequency can be measured through discrete Fourier transform (DFT) coefficients of its positive fundamental frequency. The accuracy of the frequency estimate is severely affected by noise in the power system signal and the leakage effect of the negative fundamental frequency in DFT. This paper proposes a DFT-based frequency estimation algorithm to cope with the noise as well as the leakage effect. In this algorithm, two suitable digital filters are introduced to reduce efficiently frequency estimate error due to the noise. These filters are designed to use a digital bandpass filter and a second-degree integrator. The effectiveness of the proposed algorithm in reduction of frequency estimate error is verified through simulations on noise, harmonics and frequency deviation.

Joint Estimation and Compensation for Frequency Selective IQ Imbalance in OFDM Systems (OFDM 시스템에서의 주파수 선택적 IQ 불균형의 추정 및 보상)

  • Jin, Young-Hwan;Kim, Hye-Jin;Kim, Jik-Dong;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.225-234
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing (OFDM) systems utilizing direct conversion receiver suffer from frequency selective (FS) and frequency independent (FI) phase and gain imbalances caused by imperfect local oscillator and low pass filter. In this paper, we analyze the impacts of the transmit/receive IQ imbalances on the system and propose the estimation and compensation schemes for those imbalances. The preamble signals coded by Alamouti scheme in the frequency domain could be used in the estimation of relatively large IQ imbalances with FS and FI characteristics and the estimation results are used for the compensation of distortions caused by the FI and FS IQ imbalances. The optimal maximum likelihood (ML) receiver or suboptimal ordered successive interference cancallation (OSIC) receiver utilizing the estimation results show symbol error rate (SER) performance improvement compared to zero-forcing (ZF) technique due to diversity gain inherent in the frequency domain IQ imbalances combined with the frequency selective channels.