• Title/Summary/Keyword: frequency distributions

Search Result 719, Processing Time 0.026 seconds

Damage assessment of frame structure using quadratic time-frequency distributions

  • Chandra, Sabyasachi;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.411-425
    • /
    • 2014
  • This paper presents the processing of nonlinear features associated with a damage event by quadratic time-frequency distributions for damage identification in a frame structure. A time-frequency distribution is a function which distributes the total energy of a signal at a particular time and frequency point. As the occurrence of damage often gives rise to non-stationary, nonlinear structural behavior, simultaneous representation of the dynamic response in the time-frequency plane offers valuable insight for damage detection. The applicability of the bilinear time-frequency distributions of the Cohen class is examined for the damage assessment of a frame structure from the simulated acceleration data. It is shown that the changes in instantaneous energy of the dynamic response could be a good damage indicator. Presence and location of damage can be identified using Choi-Williams distribution when damping is ignored. However, in the presence of damping the Page distribution is more effective and offers better readability for structural damage detection.

Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (I) (Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (I))

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.25-36
    • /
    • 2004
  • This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.

THE STUDY OF FLOOD FREQUENCY ESTIMATES USING CAUCHY VARIABLE KERNEL

  • Moon, Young-Il;Cha, Young-Il;Ashish Sharma
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • The frequency analyses for the precipitation data in Korea were performed. We used daily maximum series, monthly maximum series, and annual series. For nonparametric frequency analyses, variable kernel estimators were used. Nonparametric methods do not require assumptions about the underlying populations from which the data are obtained. Therefore, they are better suited for multimodal distributions with the advantage of not requiring a distributional assumption. In order to compare their performance with parametric distributions, we considered several probability density functions. They are Gamma, Gumbel, Log-normal, Log-Pearson type III, Exponential, Generalized logistic, Generalized Pareto, and Wakeby distributions. The variable kernel estimates are comparable and are in the middle of the range of the parametric estimates. The variable kernel estimates show a very small probability in extrapolation beyond the largest observed data in the sample. However, the log-variable kernel estimates remedied these defects with the log-transformed data.

  • PDF

Fractional Fourier Domains and the Shift-Invariance Characteristics of Linear Time-Frequency Distributions (부분 푸리에 영역과 선형 시간-주파수 분포의 옮김 불변 특성)

  • Durak Lutfiye;Kang Hyun Gu;Yoon Seokho;Lee Jumi;Kwon Hyoungmoon;Choi Sang Won;Song Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1060-1067
    • /
    • 2005
  • In this paper, we generalize the shift-invariance properties of linear time-frequency distributions to the fractional Fourier domains that interpolate between the time and frequency domains. Magnitude-wise shift invariance in arbitrary fractional Fourier domains distinguishes the short-time Fourier transform (STFT) among all linear time-frequency distributions and simplifies the interpretation of the resultant distribution. We prove that the STFT is the only linear distribution that satisfies the magnitude-wise shift-invariance property in the fractional Fourier domains.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.

Conversion of Flood Level and Flood Frequency Analysis for Goan Station in Han River (한강 고안지점의 홍수위 환산과 홍수 빈도해석)

  • 이승재;서규우
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.191-203
    • /
    • 1995
  • In this study, the past flood levels of Goan station, which is one of major gaging stations and located at downstream of Paldang dam, were converted based on the 1994's cross section and the flood quantiles were estimated from flood frequency analysis. The recently established rating curve was used to convert flood levels. And the parameters of the several probability distributions commonly used in hydrologic analysis were estimated based on the method of probability weighted moments and the goodness of fit tests were applied to those distributions. As a result, the gamma-2 and gamma-3 distributions were selected as the appropriate models. The flood lovels and quantiles for selected return periods were calculated based on those distributions. Furthermore, frequency analysis using historical flood information was performed to overcome the misleading caused by missing data.

  • PDF

Bayesian Nonstationary Flood Frequency Analysis Using Climate Information

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1441-1444
    • /
    • 2007
  • It is now widely acknowledged that climate variability modifies the frequency spectrum of hydrological extreme events. Traditional hydrological frequency analysis methodologies are not devised to account for nonstationarity that arises due to variation in exogenous factors of the causal structure. We use Hierarchical Bayesian Analysis to consider the exogenous factors that can influence on the frequency of extreme floods. The sea surface temperatures, predicted GCM precipitation, climate indices and snow pack are considered as potential predictors of flood risk. The parameters of the model are estimated using a Markov Chain Monte Carlo (MCMC) algorithm. The predictors are compared in terms of the resulting posterior distributions of the parameters associated with estimated flood frequency distributions.

  • PDF

Estimation of Reservoir Inflow Using Frequency Analysis (빈도분석에 의한 저수지 유입량 산정)

  • Maeng, Seung-Jin;Hwang, Ju-Ha;Shi, Qiang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was carried out to select optimal probability distribution based on design accumulated monthly mean inflow from the viewpoint of drought by Gamma (GAM), Generalized extreme value (GEV), Generalized logistic (GLO), Generalized normal (GNO), Generalized pareto (GPA), Gumbel (GUM), Normal (NOR), Pearson type 3 (PT3), Wakeby (WAK) and Kappa (KAP) distributions for the observed accumulative monthly mean inflow of Chungjudam. L-moment ratio was calculated using observed accumulative monthly mean inflow. Parameters of 10 probability distributions were estimated by the method of L-moments with the observed accumulated monthly mean inflow. Design accumulated monthly mean inflows obtained by the method of L-moments using different methods for plotting positions formulas in the 10 probability distributions were compared by relative mean error (RME) and relative absolute error (RAE) respectively. It has shown that the design accumulative monthly mean inflow derived by the method of L-moments using Weibull plotting position formula in WAK and KAP distributions were much closer to those of the observed accumulative monthly mean inflow in comparison with those obtained by the method of L-moment with the different formulas for plotting positions in other distributions from the viewpoint of RME and RAE.

Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region (원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF