• Title/Summary/Keyword: frequency bandwidth

Search Result 2,426, Processing Time 0.031 seconds

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

Decomposition of Speech Signal into AM-FM Components Using Varialle Bandwidth Filter (가변 대역폭 필터를 이용한 음성신호의 AM-FM 성분 분리에 관한 연구)

  • Song, Min;Lee, He-Young
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.45-58
    • /
    • 2001
  • Modulated components of a speech signal are frequently used for speech coding, speech recognition, and speech synthesis. Time-frequency representation (TFR) reveals some information about instantaneous frequency, instantaneous bandwidth and boundary of each component of the considering speech signal. In many cases, the extraction of AM-FM components corresponding to instantaneous frequencies is difficult since the Fourier spectra of the components with time-varying instantaneous frequency are overlapped each other in Fourier frequency domain. In this paper, an efficient method decomposing speech signal into AM-FM components is proposed. A variable bandwidth filter is developed for the decomposition of speech signals with time-varying instantaneous frequencies. The variable bandwidth filter can extract AM-FM components of a speech signal whose TFRs are not overlapped in timefrequency domain. Also, amplitude and instantaneous frequency of the decomposed components are estimated by using Hilbert transform.

  • PDF

A Study on the Phase Bandwidth Frequency of a Directional Control Valve based on the Metering Orifice (미터링 오리피스를 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Jeon, Sehyeong;Yun, Jooseop
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • The spool displacement of directional control valve can be considered as the standard signal to measure the bandwidth frequency of a directional control valve. When the spool displacement is not available, the metering-orifice system is implemented in this research as an alternative way of measuring the 90 degrees phase bandwidth frequency of the hydraulic directional control valve. The inertia effect on the transmission line oil induces the phase lead of the valve load pressure when compared with the phase of spool displacement. The capacitance effect of the oil induces the phase lag of the valve load pressure. The phase of the load pressure can be adjusted to be the same as that of the spool displacement by controlling the opening area of the metering orifice. A series of experiments were conducted to verify the effectiveness of the metering orifice. The 90 degrees phase bandwidth frequency measured from the valve load pressure was significantly deviated in some cases from the frequency of the spool displacement. The metering orifice was hard to be applied to measure the -90 degrees phase bandwidth frequency of the high precision.

Radar Imaging of Concrete Specimens with Improved Resolution Using Expanded Frequency Bandwidth (주파수 대역 확장을 이용한 콘크리트 시편의 레이더 영상 분해능 향상)

  • 임홍철;이주희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Frequency bandwidth has been combined to determine adequate frequency bandwidth which is necessary for nondestructive testing when using inverse synthetic aperture radar(ISAR). For imaging inside of concrete specimens using radar, the principles of radar and signal processing are discussed. Experimental data obtained from radar measurement of three different concrete specimens at two different frequency bandwidths of 2∼3.4 GHz, 3.4∼5.8 GHz and these two frequencies are combined to obtain improved imagery. A signal processing scheme has been implemented to visualize inside concrete specimens. The influence of frequency bandwidth was analyzed in nondestructive testing by changing frequency bandwidth for concrete specimen.

Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System (이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선)

  • Hwang, Yong-Suk;Kim, Yong-Kweon;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.

A Study on the Wide-Band Microstrip-Slotline Microwave Frequency Discriminator (마이크로스트립-슬로트선로 광대역 마이크로파 주파수변별기에 관한 연구)

  • Cho Hong Goo;Lee Choong Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 1986
  • A new microwave wideband frequency discdriminator is described, which is based on the theory of transmission line frequency discriminator known as having the widest bandwidth. It has been realized with microstrip lines and slot lines. It is experimentally verified that the discriminator is linear in a 1.6 GHz bandwidth centered at frequency of 3.2 GHz and has return loss of 20dB or more in that bandwidth.

  • PDF

The Assessment on the Sound Quality of Reduced Frequency Selectivity of Hearing Impaired People (난청인의 주파수 선택도 둔화현상이 음질에 미치는 영향 평가)

  • An, Hong-Sub;Park, Gyu-Seok;Jeon, Yu-Yong;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1196-1203
    • /
    • 2011
  • The reduced frequency selectivity is a typical phenomenon of sensorineural hearing loss. In this paper, we compared two modeling methods for reduced frequency selectivity of hearing impaired people. The two models of reduced frequency selectivity were made using LPC(linear prediction coding) algorithm and bandwidth control algorithm based on ERB(equivalent rectangular bandwidth) of auditory filter, respectively. To compare the effectiveness of two models, we compared the result of PESQ (perceptual evaluation of speech quality) and LLR(log likelihood ratio) using 36 Korean words of two syllables. To verify the effect on noise condition, we mixed white and babble noise with 0dB and -3dB SNR to speech words. As the result, it is confirmed that the PESQ score of bandwidth control algorithm is higher than the score of LPC algorithm, on the other hands, and the LLR score of LPC algorithm is lower than the score of bandwidth control algorithm. It means that both non-linearity and widen auditory filter characteristics caused by reduced frequency selectivity could be more reflected in bandwidth control algorithm than in LPC algorithm.

Implementation of Frequency Bandwidth Expander using VCO Drift Canceller and Comb generator (VCO 표류 성분 상쇄기와 빗쌀 하모닉 발생기를 이용한 주파수 대역 확장기의 구현)

  • 강승민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1683-1689
    • /
    • 1999
  • We have implemented Frequency bandwidth expander with frequency upconverting by VCO drift canceller and comb generator. Te output of the low frequency synthesizer which the output frequency is 220~280MHz(Resolution : 5MHz) is expanded to 1660~2140MHz by this system. The phase noise of this system only depends on the phase noise of comb generator and low frequency synthesizer. The phase noise of VCO don’t influence at the frequency expander because the drift of VCO cancel out. When we control the output of VCO, the output frequency of this system is varied by 60MHz x N as filter banker. The switching time and the spurious of the frequency expander is below 3usec, -55dBc respectively. This system easily expands bandwidth additively by expanding the output bandwidth of the VCO. We can apply the frequency expander to very wide band microwave synthesizer which has fast switching time.

  • PDF

Study on Bandwidth Frequency of Servovalve based on Metering Cylinder (실린더를 이용한 서보 밸브 대역폭 주파수의 측정에 관한 연구)

  • Kim, S.D.;An, Wen-Long;Jeon, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.44-51
    • /
    • 2015
  • In this study, a metering cylinder was constructed, and the velocity obtained from the linear velocity transducer (LVT) of the cylinder piston was used to evaluate the dynamic performance of an electro-hydraulic servovalve. Frequency response experiments involving the spool displacement and piston velocity (LVT signal) were conducted with different input signal amplitudes, hydraulic pipe diameters, and supply pressures. The spool displacement signal accurately reflected the performance of the servovalve. Meanwhile, the -3 dB bandwidth frequency of the LVT signal was similar to the spool displacement signal, except for a small-amplitude input signal, and the $-90^{\circ}$ phase lag bandwidth frequency showed some differences.

Common Spectrum Assignment for low power Devices for Wireless Audio Microphone (WPAN용 디지털 음향기기 및 통신기기간 스펙트럼 상호운용을 위한 채널 할당기술에 관한 연구)

  • Kim, Seong-Kweon;Cha, Jae-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.724-729
    • /
    • 2008
  • This paper presents the calculation of the required bandwidth of common frequency bandwidth applying queueing theory for maximizing the efficiency of frequency resource of WPAN(Wireless Personal Area Network) based Digital acoustic and communication devices. It assumed that LBT device(ZigBee) and FH devices (DCP, RFID and Bluetooth) coexist in the common frequency band for WPAN based Digital acoustic and communication devices. Frequency hopping (FH) and listen before talk (LBT) have been used for interference avoidance in the short range device (SRD). The LBT system transmits data after searching for usable frequency bandwidth in the radio wave environment. However, the FH system transmits data without searching for usable frequency bandwidth. The queuing theory is employed to model the FH and LBT system, respectively. As a result, the throughput for each channel was analyzed by processing the usage frequency and the interval of service time for each channel statistically. When common frequency bandwidth is shared with SRD using 250mW, it was known that about 35 channels were required at the condition of throughput 84%, which was determined with the input condition of Gaussian distribution implying safety communication. Therefore, the common frequency bandwidth is estimated with multiplying the number of channel by the bandwidth per channel. These methodology will be useful for the efficient usage of frequency bandwidth.