• Title/Summary/Keyword: frequency Ratio

Search Result 5,812, Processing Time 0.029 seconds

Dynamic Response Property according to Natural Frequency Ratio between Dome Structure and Substructure (상부 돔구조와 하부구조간의 고유진동수비에 따른 동적응답특성)

  • Lee, Young-Rak;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • This study investigate the dynamic response changes of rib dome structure according to property changes of Substructure. Eigenvalue analysis is conducted in first natural frequency of rib dome versus substructure and searched in the dominant mode of horizontal and vertical direction. Resonance frequency by each first natural frequency of the rib dome structure, substructure and total structure is applied for a seismic wave. That is analyzed about maximum displacement response ratio and maximum acceleration response ratio.

An analysis of frequency divider ratio in N-loop PLL frequency synthesizer for CDMA communication system (부호분할다중화 통신시스템을 위한 다중루프 PLL주파수 합성기에서의 주파수분주정수에 관한 해석)

  • 김도욱;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.54-62
    • /
    • 1988
  • For code division multiple access, a frequency synthesizer of elementary components is necessary in the system application of frequency hopped spread spectrum communication. This paper proposes the model of N-loop PLL frequency synthesizer to be adaptied for generating the output frequency resultes in the frequency hopping pattern and to be easy in practical application of the system. It was analyzed how the frequency divider ratio distribute, what the method to decide frequency divider ratio is and what relationship of bandwidth of BPF and degree of multiple have is also analyzed in order to hop the desired frequency output.

  • PDF

The Oscillation Characteristics of a Magneticfluid Plug in Curved Tube (곡관내 자성유체 PLUG의 진동특성)

  • Chun, U.H.;Lee, H.N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.46-57
    • /
    • 1995
  • The aim of the present study is to provide fundamental informations for the development of magneticfluid actuator. To achieve the aim, oscillation characteristics of the magneticfluid plug are investigated by experiment for the various length and position of the magneticfluid plug and the frequency of magnetic field. The oscillation characteristics are obtained. Amplitude, natural frequency, phase shift and damping ratio, are compared with theoretical values. From the study, the following conclusive remarks can be made. The experimental equation for the magnetic field is obtained. The critical magneticfluid length exists and its value is about 70mm. The range of the damping ratio and fluid loss coefficient obtained by experiment are 0.1~0.2 and 30~100, respectively. Comparison between experimental and theoretical results of oscillation characteristics shows good agreement in the high frequency range. Meanwhile, in the low frequency range, there appears little discrepancies(5% in the frequency and amplitude and 10% in phase difference and damping ratio) with each other.

  • PDF

Dynamic Response of Arch Structure according to Natural Frequency Ratio between Arch and Columns (아치구조와 기둥간의 고유진동수비에 따른 아치구조물의 동적응답특성)

  • Seok, Keun-Young;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.65-72
    • /
    • 2013
  • Long span arch structure is composed of arch as relatively flexible structure and column as relatively rigid structure. In this study, the characteristic of dynamic response is analyzed according to the natural frequency ratio between arch and columns. The result of analysis for arch as relatively vertical vibration mode is dominant, the influence of columns mainly appears at relatively high frequency band according to increase of 1st mode frequency in column. However, the dynamic characteristic of arch structure is expected to vary with not only frequency ratio but interaction between vibration modes of arch and columns.

Resonance Frequency of the Natural Convection in the Closure Cavity for the Variable Aspect Ratio (종횡비가 변하는 공동 내 자연대류의 공진주파수)

  • Chun, Kun-Ho;Joo, Kwang-Sup;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.609-614
    • /
    • 2000
  • This numerical study investigate resonance frequency of natural convection for steady state, periodic flow and chaotic flow in two-dimensional direct numerical simulations, differentially heated, vertical cavities having aspect ratios near unity. The enclosure cavity has isothermal and time dependent temperature side walls and adiabatic top/bottom walls. The aspect ratio is 1/3, 1/2, 1, 2, and 3 for the varying Rayleigh number. Resonance frequency for AR=1 has decrease as the aspect ratio and the Rayleigh number are increasing.

  • PDF

Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System (감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

Transverse Vibration of Rectangular Plates Having an Inner Cutout in Water (유공직사각형평판(有孔直四角形平板)의 접수진동(接水振動))

  • H.S.,Lee;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 1984
  • This paper is concerned with the experimental investigation of transverse vibration characteristics in water of rectangular plates having an inner free cutout. Systematic experiments are carried out to investigate effects of the surrounding water on the added mass and the natural frequency of the plates due to the changes of the aspect ratio, hole size and eccentricity. The main subject is the clamped rectangular plate with a circular hole. For the purpose of comparative evaluations, some other common-type boundary conditions and hole shapes such as ellipses and rectangles are also investigated. Some of the results obtain are as follows; 1) For each given aspect ratio of the plate, there is a hole area ratio which gives a minimum value of the nondimensional frequency parameter for each mode. The hole area ratio increases as the order number of the mode increases. 2) The nondimensinal mass-increment parameter decreases as the aspect ration or the order number of the mode increases. For each given aspect ratio, the parameter the fundamental mode decreases monotonically as the hole area ratio increase. In cases of the second and higher order modes, however, each mode has a hole area ratio which gives a maximum value of the parameter for each aspect ratio more then 2/3. 3) Comparing elliptic holes with rectangular ones with same hole area ratio, nondimensional frequency parameters are almost same for each given ratio of the shorter axises to the longer one. 4) The influences of difference in boundary condion on nondimensional frequency parameters in water are similar to those in air.

  • PDF

Prediction of Defibrillation Success of Ventricular Fibrillation ECG Signals using Time-Frequency Analysis (시-주파수 분석을 이용한 심실세동시 심전도 분석을 통한 제세동 예측에 관한 연구)

  • Sung, Hong-Mo;Shin, Jae-Woo;Lee, Hyun-Sook;Hwang, Sung-Ho;Yoon, Young-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.181-188
    • /
    • 2006
  • The purpose of this study is to predict the defibrillation success of a ventricular Fibrillation ECG signal using time-frequency analysis. During CPR, coronary perfusion pressure and electrocardiogram were measured. Parameters extracted from time-frequency domain were served as predictor of resuscitation success. Time frequency distribution(TFD) of ECG signals was estimated from the smoothed pseudo Wigner-Ville distribution(SPWVD). Median frequency, peak frequency, 1/f slope, frequency band ratios$(2{\sim}4Hz,\;4{\sim}6Hz,\;6{\sim}8Hz,\;8{\sim}10Hz,\;10{\sim}12Hz,\;12{\sim}15Hz)$ were extracted from each TFD as function of time. Paired t-test was used to determine the differences in ROSC and non-ROSC groups. In the statistical results, we selected four significant parameters - median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. We made an attempt to predict defibrillation success by combining features extracted from time frequency distribution. Independent t-test was used to determine the differences ROSC and non-ROSC groups. Consequently, we selected four significant parameters-median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. The relationship between coronary perfusion pressure and ECG parameters was analyzed with linear regression analysis. R-square value was 55%. 1/f slope and $8{\sim}10Hz$ band ratio had the significant relationship with coronary perfusion pressure.