• Title/Summary/Keyword: french marigold

Search Result 2, Processing Time 0.017 seconds

Effects of Simulated Acid Rain on Growth and Antioxidant System in French Marigold (Tagetes patula L.) (인공산성비가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향)

  • Kim, Hak-Yoon;Kim, Jeung-Bea
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.159-163
    • /
    • 2005
  • This study was conducted to investigate the effect of simulated acid rain (SAR) on growth and antioxidant system in french marigold (Tagetes patula L.). Plants were subjected to four levels of SAR (pH 5.6, 4.0, 3.0, 2.0) in the growth chambers for 2 weeks. SAR decreased both plant height and plant dry weight of french marigold. As the pH levels decreased from 5.6 to 2.0, the content of MDA highly increased linearly. The ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were significantly increased with decreasing pH levels. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of the plant affected by SAR were increased as the pH decreased. Based on the results, SAR caused oxidative stress in french marigold and resulted in significant reduction in plant growth. Biochemical protection responses might be activated to prevent the plant from damaging effects of oxidative stress generated in SAR.

Effects of Soil pH on the Growth and Antioxidant System in French Marigold (Tagetes patula L.) (토양 pH가 만수국(Tagetes patula L.)의 생육 및 항산화 작용에 미치는 영향)

  • Kim, Jeung-Bea;Cho, Hyun-Je;Kim, Hak-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.348-352
    • /
    • 2007
  • To investigate the effects of soil pH on plants, the seedlings of french marigold (Tagetes patula L.) was transplanted into the soils acidified with $H_{2}SO_{4}$ solutions (pH 5.3, 4.5, 3.9, 3.5). The level of malondialdehyde was significantly increased by soil acidification. As the pH levels decreased from 5.3 to 3.5, the contents of dehydroascorbate and oxidized glutathione of the plant were significantly increased. The antioxidative enzyme activities of the plant affected by soil acidification were increased as the pH decreased.