• Title/Summary/Keyword: freezing depth

Search Result 100, Processing Time 0.025 seconds

Variationsin Air and Ground Temperatures During a Frozen Season in the Subalpine Zone of Mt. Halla (한라산 아고산대의 동결기 기온 및 지온변화)

  • Kim, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.95-107
    • /
    • 2013
  • In order to examine the temperature regime responsible for periglacial processes, air and ground temperatures were monitored from October 2010 to May 2011 at a subalpine bare patch (1,710m asl) of Mt. Halla. Four thermistor sensor probes were installed at 55 cm above a ground surface and depths of 2 cm, 10 cm, and 20 cm, respectively. A mean air temperature is $-0.1^{\circ}C$, while mean ground temperatures are $1.8^{\circ}C$ at 2 cm, $2.6^{\circ}C$ at 10 cm and $3.2^{\circ}C$ at 20 cm deep. A mean monthly ground temperature at 2 cm deep demonstrates below $0^{\circ}C$ successively from January to March, while those at 10 cm and 20 cm deep show no sub-zero temperature. A total of 72 freeze-thaw cycle was observed in air temperature. However, the numbers in ground temperature reduced into 17 at 2 cm, 8 at 10 cm, and 3 at 20 cm deep. The cycles of air temperature and ground temperature at 2 cm deep mostly fluctuated diurnally, while those of ground temperature at 10 cm and 20 cm deep exhibited a several-daily oscillation. Snow cover over 55 cm high remained from January to early April, and it seemed to disappear completely on April 16. A seasonal frost of at least 2 cm thick was formed on late December and the isotherm of $0^{\circ}C$ descended slowly into 10 cm deep on late March to early April due to the insulating snow cover. It showed the maximum freezing depth of 20 cm on April 7 to 14 and then thawed rapidly so that the frozen ground did not longer after April 17. Periglacial processes are predominant during a freezing period than a thawing period when the ground surface is still covered with snow. The periglacial mass movement in the subalpine zone of Mt. Halla is mainly generated by frost creep in terms of the occurrence depth of diurnal freeze-thaw cycle and the maximum freezing depth of ground.

Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture (탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.

Rock-Surface Temperatures of Baeknokdam Northwest Face in the Summit Area of Mt. Halla (한라산 백록담 서북벽 암온의 향별 특성)

  • KIM, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-121
    • /
    • 2012
  • Rock-surface temperatures were observed at a trachytic lava dome, called as Baeknokdam Northwest Face, in the summit area of Mt. Halla, Jeju Island, to examine the frequency and occurrence season of freeze-thaw cycles and the rate of temperature changes during a freezing period. Long-term measurements were recorded over 18 months from November 2006 to April 2008, at a 1-hour logging interval and rock depth of 1.5 cm. Both diurnal freeze-thaw cycles and effective freeze-thaw cycles appear in larger numbers on a south-facing rock face than a north-facing rock face. The diurnal cycles were dominantly observed on February and March for the south face and on November and April for the north face, respectively. The annual freeze-thaw cycles were confirmed in terms of the presence of seasonal freezing periods lasting from mid-November to mid-April for the south face and from early-November to late-April for the north face, respectively. The rate of decreasing temperatures during the seasonal freezing periods is larger on the north face than the south face. Notwithstanding the lower numbers of freeze-thaw events, the north face experiences a higher frost intensity since the number of hours below $-3^{\circ}C$ is larger on the north face than the south face. The number of freeze-thaw events and the duration of days with continuous sub-zero rock temperatures largely depend on the solar radiation controlled by the aspect of the monitored rock surfaces, and thus the high-frequency short-term frost cycle dominantly appears on the south face and the annual frost cycle on the north face, respectively.

Microporous Polystyrene Membranes Produced via Thermally Induced Phase Separation (열적으로 유도된 상 분리에 의해 제조된 폴리스티렌 미세 다공성 막)

  • Song, Seung-Won;Torkelson, John M.
    • Membrane Journal
    • /
    • v.5 no.3
    • /
    • pp.119-128
    • /
    • 1995
  • The effects of coarsening on microstructure formation in polystyrene-cyclohexane solutions and membranes made from them were studied by scanning electron miccoscopy(SEM). Thermal analysis of the polymer solutions was carried out with a differential scanning calorimeter and the binodal curve was determined from the onset temperature of the heat of demixing peak. Using thermally induced phase separation(TIPS) and a freeze drying technique, it was demonstrated that polymer membrane microstructure can be changed significantly by controlling coarsening time and quench route. For systems undergoing phase separation by spinodal decomposition, resulting in a well interconnecmd, microporous structure with nearly uniform pore sizes, it was found that extending the phase separation time prior m freezing and solvent removal can result in a significant increase in pore or cell size which is highly dependent on both quench depth and coarsening time. Also this study has revealed the important role of polymer concentration in dictating the material continuity of the membranes.

  • PDF

Centrifugal Modeling of Sand Compaction Pile (모래다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Kim, Sang-Jin;Chae, Seung-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.187-193
    • /
    • 2001
  • This paper is results of extensive centrifuge model experiments about design factors influencing the bearing capacity and the settlement behaviors of SCP (Sand Compaction Pile). Centrifuge model tests were carried out changing design factors for SCP method such as replacement area ratio (as= 20, 40, 70%), improvement ratio to footing width (W/B = 1, 2, 3), and amount of fines in sand pile (#200 = 5, 10, 15). Therefore, the effects of these design factors on the bearing capacity and the settlement behavior of SCP were investigated and changes of stress concentratio rato due to such an design factors were also investigated. Centrifuge model testing technique for preparing and installing centrifuge model of sand compaction pile, using freezing them, was also developed. As results of centrifuge model tests, more fines in sand compaction pile increases the bearing capacity of SCP. Optimum improvement ratio to footing width was found to be 2. Values of stress concentration ratio was in the ranges of 1.5 - 3.5. The depth of bulging in sand piles was found in the range of 2.0 - 2.5 times of pile diameter.

  • PDF

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Stress Concentration Characteristics of Soft Ground Treated by Sand Compaction Pile (모래다짐말뚝으로 개량된 연약지반의 응력분담특성)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Sang-Jin
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.145-151
    • /
    • 2002
  • This paper is results of extensive centrifuge model experiments about design factors influencing the bearing capacity and the settlement behaviors of SCP (Sand Compaction Pile). Centrifuge model tests were carried out changing design factors for SCP method such as replacement area ratio (as= 20, 40, 70%), Improvement ratio to footing width (W/B = 1, 2, 3), and amount of fines m sand pile (#200 = 5, 10, 15). Therefore, the effects of these design factors on the bearing capacity and the settlement behavior of SCP were investigated and changes of stress concentratio rato due to such an design factors were also investigated. Centrifuge model testing technique for preparing and installing centrifuge model of sand compaction pile, using freezing them, was also developed. As results of centrifuge model tests, more fines in sand compaction pile increases the bearing capacity of SCP. Optimum improvement ratio to footing width was found to be 2. Values of stress concentration ratio was in the ranges of 1.5 - 3.5. The depth of bulging in sand plies was found in the range of 2.0 - 2.5 times of pile diameter.

  • PDF

Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집-)

  • 최중대;김정제;정진철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

Determination on the Reinforced Roadbed Thickness of Concrete Track at Embankment Section (흙쌓기 구간에서 콘크리트궤도 강화노반의 두께 결정에 관한 연구)

  • Lee, Il-Wha;Lee, Sung-Jin;Sin, Min-Ho;Hwang, Sun-Kun;Lee, Chang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.835-843
    • /
    • 2009
  • Recently the more stable roadbed is required due to the high speed and design load. Therefore the reinforced roadbed was introduced as the solution. But the thickness and stiffness of reinforced roadbed in design code is being conservatively assessed by the foreign code without considering the domestic construction condition. In this paper, adequate Young's modulus, drain capacity, freezing depth, economical efficiency, bearing capacity, construction condition and 3-D finite element method were employed to determine the proper thickness of reinforced roadbed at the embankment section.

Status and Prospect of Test Methods of Quality Silicone Water Repellent for Protecting Reinforced Concrete

  • Sun, H.Y.;Yuan, Z.Y.;Yang, Z.;Shan, G.L.;Shen, M.X.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.141-150
    • /
    • 2017
  • Impregnating with quality silicone water repellent on the concrete surface is an effective method of protecting concrete. Quality silicone water repellent has been widely used in the engineering profession because of its desirable properties such as hydrophobicity, keeping concrete breathable and preserving the original appearance of the concrete. The companies in China that produce silicone water repellent are listed. Test methods in the specifications or standards about silicone water repellent in China are summed. The test methods relative to durability of concrete impregnated with silicone water repellent (such as resistant to chloride ion penetration, resistant to alkali, resistance to freezing and thawing and weatherability etc.) and the constructive quality (such as water absorption rate, impregnating depth and the dry velocity coefficient etc.) are compared and analyzed. The results indicate that there are differences among test methods relative to different specifications with the same index and therefore, confusion has ensued when selecting test methods. All test methods with the exception of the method of water absorption rate by using a Karsten flask are not non-destructive methods or conducted in a laboratory. Finally, further research on silicone water repellent during application is proposed.