• Title/Summary/Keyword: freezing analysis model

Search Result 83, Processing Time 0.025 seconds

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects (융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구)

  • Park, Woo-Jin ;Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.51-63
    • /
    • 2023
  • Numerical analysis was conducted to determine the effect of soil behavior by thawing and freezing of seasonal frozen soil on pile foundations. The analysis was performed using the finite element method (FEM) to simulate soil-pile interaction based on the atmosphere temperature change. Thermomechanical coupled modeling using FEM was applied with the temperature-dependent nonlinear properties of the frozen soil. The analysis model cases were applied to the MCR and HDP models to simulate the elastoplastic behavior of soil. The numerical analysis results were analyzed and compared with various conditions having different length and width sizes of the pile. The results of the numerical analysis showed t hat t he HDP model was relat ively passive, and t he aspect and magnit ude of t he bearing capacit y and displacement of the pile head were similar depending on the length and width of the pile conditions. The vertical displacement of the pile head by thawing and freezing of the ground showed a large variation in displacement for shorter length conditions. In the MCR model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0387 and 0.0277 m, respectively. In the HDP model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0367 and 0.0264 m, respectively. The results of the pile bearing capacity for the two elastoplastic models showed a larger difference in the width condition than the length condition of the pile, with a maximum of about 14.7% for the width L condition, a maximum of about 5.4% for M condition, and a maximum of about 5.3% for S condition. The significance of the effect on the displacement of the pile head and the bearing capacity depended on the pile-soil contact area, and the difference depended on the presence or absence of an active layer in the soil and its thickness.

Numerical Investigation of Freezing and Thawing Process in Buried Chilled Gas Pipeline (매설 냉각가스관의 동결-융해에 대한 수치해석 연구)

  • Shin, Hosung;Park, Heungrock
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.17-26
    • /
    • 2016
  • Characteristic behaviors of geo-structure during freezing and thawing process have to be understood based on fundamental knowledge on phase change in porous soil and interaction between soil and structure. Inversion analysis using published one-dimensional soil freezing tests was conducted to suggest a mechanical model to consider an effect of the ice saturation on Young's modulus. Silty soil was more sensitive to temperature than weathered granite soil and sand, and weathered granite soil was more affected by initial water saturation in stiffness decrease than silty soil. Numerical simulations on chilled gas pipeline showed that shielding effect from surrounding frozen zone around the pipe decreases impact from external load onto the pipe. And a pipe installed in sand backfill showed more heaving due to relatively low stiffness of sand during freezing than that of surrounding in-situ weather granite soil. However, it had more stable stress condition due to effective stress redistribution from external load.

Investigation of Molten Fuel Relocation Dynamics with Applications to LMFBR Post-Accident Fuel Relocation

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-98
    • /
    • 1980
  • The process of solidification of a single-phase flowing hot fluid in a cylindrical tube has been investigated analytically and experimentally. A series of tests were performed, using paraffin -wax and Wood's metal as flowing hot fluids. These data verified the existing quasistatic numerical analysis model of freezing process developed at Brookhaven National Laboratory In addition, experimental results provided information regarding the effects of various parameters on the .process of transient flowing and freezing through a vertical channel. The experimental apparatus and techniques are described. Comparison of experimental data with predictions of mathematical models for transient molten fluid displacement are presented in graphical form. In addition, the mathematical model is applied to LMFBR post-accident conditions.

  • PDF

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (I) - The Influence of a Pressure Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (I) - 압력비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1291-1298
    • /
    • 2005
  • Since the interior shape of a pressure regulator is complex and the change of fluid resistance at each operation condition is rapid and big, the pressure regulator can become the major factor that causes big loss in pipelines. So the suitable pressure regulator modeling by each operation condition is important to obtain reliable results especially in small scale pipeline network analysis. And in order to prevent the condensation and freezing problems, it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models at every inlet-outlet pressure ratio. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio. Additionally it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio. Furthermore, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio too.

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF

A Study on the One Side Freezing /Thaw and Carbonation of Autoclaved Lightweight Concrete (경량기포콘크리트의 편면동결융해 및 탄산화에 관한 연구)

  • 노재성;황의환;홍성수;이범재
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.149-156
    • /
    • 1995
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Ideal body modeling of porous rock by frost-thawing (다공질암의 동결융해 현상에 대한 이상물체 모델의 적용성 연구)

  • Han, Heui-Soo;Back, Yoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.399-405
    • /
    • 2010
  • The accumulated displacements and fatigues of rock are increased by the stress-hysteresis, induced from repeated frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysteresis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, to do ideal body analysis, Kelvin model could be used to analyze the frost-thawing behavior in winter. In general, rock slope failure occurs by the deterioration of rocks, which is caused by the repetition of freezing-thawing process. In order to keep the safety of such rock mass structures the deterioration process of rock needs to be described quantitatively using some meaningful parameters. In this work, the deterioration process in freezing-thawing cycle of tuff, which is a famous soft porous rock, is investigated through laboratory tests and successfully described as a differential equation for the change of porosity. And then, the deterioration of the mechanical properties of rock, such as Young's modulus and uniaxial compressive strength, are quantitatively described as a function of the porosity.

Thermal Analysis of Spacecraft Propulsion System and its Validation

  • Han, Cho-Young;Park, Joon-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.847-856
    • /
    • 2004
  • Heaters for the spacecraft propulsion system are sized to prevent propellant from catastrophic freezing. For this purpose, thermal mathematical model (TMM) of the propulsion system is developed. Calculation output is compared with the results obtained from thermal vacuum test in order to check the validity of TMM. Despite a little discrepancy between the two types of results, both of them are qualitatively compatible. It is concluded that the propulsion system heaters are correctly sized and TMM can be used as a thermal design tool for the spacecraft propulsion system.