• Title/Summary/Keyword: freeze-thaw environment

Search Result 42, Processing Time 0.021 seconds

Effect of Polymers on the Freezing and Thawing Resistance of Hardened Cement Mortar (시멘트 경화체의 동결융저항성에 미치는 Polymer의 영향)

  • 이선우;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.509-516
    • /
    • 1991
  • The effect of various polymers on the freeze-thaw resistance of hardened cement mortar was investigated. For this study, styrene butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA) were used to prepare cement mortar specimen, and then freeze-thaw experiment was carried out. By adding SBR adn EVA to the specimen, the freeze-thaw resistance of specimens was improved, but when PVA was added to the specimen, its freeze-thaw resistance was lowered. Particularly, the specimens which were added 5, 10% of SBR and 5% of EVA showed excellent freeze-thaw resistance in the salt environment.

  • PDF

Pore Structure of Calcium Sulfoaluminate Paste and Durability of Concrete in Freeze-Thaw Environment

  • de Bruyn, Kyle;Bescher, Eric;Ramseyer, Chris;Hong, Seongwon;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • Mercury intrusion and nitrogen sorption porosimetry were employed to investigate the pore structure of calcium sulfoaluminate ($C{\bar{S}}A$) and portland cement pastes with cement-to-water ratio (w/c) of 0.40, 0.50, and 0.60. A unimodal distribution of pore size was drawn for $C{\bar{S}}A$ cement pastes, whereas a bimodal distribution was established for the portland cement pastes through analysis of mercury intrusion porosimetry. For the experimental results generated by nitrogen sorption porosimetry, the $C{\bar{S}}A$ cement pastes have a smaller and coarser pore volume than cement paste samples under the same w/c condition. The relative dynamic modulus and percentage weight loss were used for investigation of the concrete durability in freeze-thaw condition. When coarse aggregate with good freeze-thaw durability was mixed, air entrained portland cement concrete has the same durability in terms of relative dynamic modulus as $C{\bar{S}}A$ cement concrete in a freeze-thaw environment. The $C{\bar{S}}A$ cement concrete with poor performance of durability in a freeze-thaw environment demonstrates the improved durability by 300 % over portland cement concrete. The $C{\bar{S}}A$ concrete with good performance aggregate also exhibits less surface scaling in a freeze-thaw environment, losing 11 % less mass after 297 cycles.

Adhesion Strength Properties of Tile Modules Exposed to Freeze-Thaw Environment (동결융해 환경에 노출된 타일 모듈의 부착강도 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Choi, Byung-Cheol;Kim, Moon-Kyu;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.217-218
    • /
    • 2023
  • In modern architecture, tiles are used as a decorative material to enhance the appearance of buildings. However, defects occurring during tile installation affect not only the appearance of the building, but also its maintenance. This study aims to investigate stable tile installation by producing tile modules using the floating mortar method and conducting freeze-thaw tests to measure their adhesion strength. Test results showed that the adhesion strength increased as the mesh size decreased, except for S3 mesh. This study highlights the importance of research on tile installation to solve problems related to building appearance and maintenance.

  • PDF

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor

  • Turk, Kazim;Kina, Ceren;Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • In this study, deep learning and k-Nearest Neighbor (kNN) models were used to estimate the sorptivity and freeze-thaw resistance of self-compacting mortars (SCMs) having binary and ternary blends of mineral admixtures. Twenty-five environment-friendly SCMs were designed as binary and ternary blends of fly ash (FA) and silica fume (SF) except for control mixture with only Portland cement (PC). The capillary water absorption and freeze-thaw resistance tests were conducted for 91 days. It was found that the use of SF with FA as ternary blends reduced sorptivity coefficient values compared to the use of FA as binary blends while the presence of FA with SF improved freeze-thaw resistance of SCMs with ternary blends. The input variables used the models for the estimation of sorptivity were defined as PC content, SF content, FA content, sand content, HRWRA, water/cementitious materials (W/C) and freeze-thaw cycles. The input variables used the models for the estimation of sorptivity were selected as PC content, SF content, FA content, sand content, HRWRA, W/C and predefined intervals of the sample in water. The deep learning and k-NN models estimated the durability factor of SCM with 94.43% and 92.55% accuracy and the sorptivity of SCM was estimated with 97.87% and 86.14% accuracy, respectively. This study found that deep learning model estimated the sorptivity and durability factor of SCMs having binary and ternary blends of mineral admixtures higher accuracy than k-NN model.

Analysis of Correlation between Freeze-Thaw Damage on Concrete and Chloride Penetration Acceleration Effect Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상과 염분 침투 가속효과의 상관관계 분석)

  • Park, Ji-Sun;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.148-156
    • /
    • 2022
  • Although most domestic concrete structures are simultaneously exposed to freeze-thaw and chloride environments, concrete durability in the field is evaluated by each single action, and the evaluation of chloride-caused damage of concrete requires additional indoor experimental analysis of chloride contents by coring samples from structures in the field. However, in Korea, policies to strengthen facility maintenance, such as 「Special Act on the Safety Control and Maintenance of Establishments」 and 「Framework Act on Sustainable Infrastructure Management」, have been established and implemented since 2018 and facilities subject to safety inspection management by the government and local governments increases, the effective simplification technology for the inspection and diagnosis of concrete structure is needed. Therefore, this study attempted to evaluate the possibility of determining the acceleration chloride penetration of freeze-thaw damaged concrete by using the surface rebound value. For this purpose, concrete specimens already having freeze-thaw damage by exposure to the freeze-thaw acceleration environment were immersed in chloride water. After that, the acceleration relationship of chloride penetration according to freeze-thaw damage was analyzed using the amount of chloride contents in concrete.

A study on freeze-thaw evaluation criteria for road tunnels considering climate characteristics (국내 기후특성을 고려한 도로터널의 동결-융해 평가기준 연구)

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Globally, the frequency and intensity of abnormal climate events are increasing. Since this can directly damage lives and property, it is important to establish and implement an appropriate maintenance strategy in response to abnormal weather. Facilities built in cold regions where cold wave or heavy snow occurs frequently can be more damaged by freeze-thaw than facilities located in other regions. However, there are no clear criteria for quantitatively identifying the damage of freeze-thaw and how to cope with it. Therefore, based on the results of indoor freezing tests, the freezing conditions considering regional climate characteristics were selected as one day at -14℃, two days at -7℃ or three days at -5℃. As a result, it was confirmed that they were in the freeze-thaw environment in order of Daegwallyeing (8.3 times), Cheorwon (5.3 times) and Taebeak (4.9 times) in Gangwon region. Through this study, the evaluation criteria of freeze-thaw of road tunnels were newly proposed. The freeze-thaw evaluation criteria of the road tunnel presented in this study can be used for the quantitative evaluation and maintenance strategy of tunnels in cold regions.

CLSM Analysis of Change in Roughness and Physical Properties of Granite after Freeze-Thaw Experiments (CLSM을 이용한 동결/융해 실험 후 화강암 시료의 표면 및 물성변화 분석)

  • Jeong, Jongtaek;Choi, Junghae;Chae, Byung-Gon;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • Freeze-thaw experiments were conducted to evaluate changes in surface roughness and physical properties in samples of granite from Ilgwang and Imki mines, Korea. The temperature range in the experiments was $-20^{\circ}C$ to $40^{\circ}C$, based on typical summer and winter temperatures in Korea, and the surface was observed every 20 cycles. One cycle comprised 1 hour of heating or cooling of the samples and 1 hour during which the target temperature was maintained. With increasing repetitions of the freeze-thaw experiment, porosity increased by 0.05%-0.15% in the two samples and the dry weight increased, whereas the volume of the soil and saturation weight decreased. Observations by confocal laser scanning microscope (CLSM) revealed that line and surface roughness parameters showed a tendency to increase and decrease, respectively, with elapsed time. Changes in surface roughness were apparent on the CLSM images.

Analysis of Rock Surface Roughness and Chemical Species Generation by Freeze-Thaw Experiments (동결융해 실험을 통한 암석 표면 거칠기 및 화학종 생성에 관한 분석)

  • Choi, Junghae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Rocks exposed to the surface are subject to long-term weathering, and such effects weaken their engineering stability. Especially as weathering progresses, the surface of rocks will be changed by weathering, and such surface changes will affect the engineering safety of the rock mass. In addition, the chemical species produced in the weathered rock have a direct effect on the surrounding environment or on the structure. In areas where rocks are exposed, such as mining areas, chemical species produced by weathering can have a serious impact on the surrounding natural environment. In this study, accelerated weathering experiments using freeze/thaw system were conducted on rocks that had already been weathered and fresh rocks, and surface changes of each rock were observed with confocal laser scanning microscope (CLSM), and chemical species were analyzed using IC/ICP-MS. As the weathering progressed, the surface roughness decreased, and the amount of chemical species produced increased. The results of this study can be used as basic data for evaluating engineering/environmental safety in areas where rocks are exposed.