• 제목/요약/키워드: free-form deformation(FFD)

검색결과 11건 처리시간 0.028초

FFD를 이용한 3차원 라스트 데이터 생성 시스템 (Development of a Three Dimensional Last Data Generation System using FFD)

  • 박인덕;임창현;김시경
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.700-706
    • /
    • 2003
  • This paper presents a 3D last design system that provides the 3-dimensional last data based on the FFD(Free Form Deformation) method. The proposed system utilizes the control points for deformation factor to convert from the 3D point cloud foot data to the 3D point cloud last data. The deformation factor of the FFD is obtained from the conventional last design technique, and constructed on the FFD lattice based on the bottom view and lateral view of the measured 3D point cloud foot data. In addition, the control points of FFD lattice is decided on the anatomical points of foot. The deformed 3D last obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the proposed system have the descent 3D last data based on the openGL window.

LFFD 및 SFFD를 이용한 3차원 라스트 데이터 생성시스템 개발 (Three Dimensional Last Data Generation System Design Utilizing SFFD and LFFD)

  • 김시경;박인덕
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-118
    • /
    • 2006
  • A new last design approach based on the Limb line FFD (LFFD) and Scale factor FFD (SFFD) is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the measured foot 3D data and last 3D data. Furthermore, the proposed last data generation system utilizes cross sectional data extracted obtained from the measured 3D foot data. First, the last design rule of the LFFD is constructed on the FFD lattice based on foot last shape analysis. Secondly, SFFD is constructed on the LFFD new lattice based on scale factor deformation. The scale factor is constructed on the boundary edges of polygonized patch and the cross section last data boundary edge of the polygon object. Suppose the two boundary curves have been preprocessed so that they run in the same direction and they forms the SF(Scale Factor). In addition, the control points of FFD lattice are derived with cross. sectional data interpolation methods from a finite set of 3D foot data.

Enhanced FFD-AABB Collision Algorithm for Deformable Objects

  • Jeon, JaeHong;Choi, Min-Hyung;Hong, Min
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.713-720
    • /
    • 2012
  • Unlike FEM (Finite Element Method), which provides an accurate deformation of soft objects, FFD (Free Form Deformation) based methods have been widely used for a quick and responsive representation of deformable objects in real-time applications such as computer games, animations, or simulations. The FFD-AABB (Free Form Deformation Axis Aligned Bounding Box) algorithm was also suggested to address the collision handling problems between deformable objects at an interactive rate. This paper proposes an enhanced FFD-AABB algorithm to improve the frame rate of simulation by adding the bounding sphere based collision test between 3D deformable objects. We provide a comparative analysis with previous methods and the result of proposed method shows about an 85% performance improvement.

단면 분할 FFD를 이용한 3D 라스트 데이터 생성시스템 개발 (Three Dimensional Last Data Generation System Utilizing Cross Sectional Free Form Deformation)

  • 김시경;박인덕
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.768-773
    • /
    • 2005
  • A new approach for human foot modelling and last design based on the cross sectional method is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the foot 3D data and last 3D data. The cross section a surface of 3D foot for the 3D last, design modeling of free form geometric last shapes. The proposed last design scheme wraps the 3D last data surrounding the measured 3D foot data with the effect of deforming the last design rule The last design rule of the FFD is constructed on the FFD lattice based on foot-last shape analysis. In addition, the control points of FFD lattice are constructed with cross sectional data interpolation methods from the a finite set of 3D foot data. The deformed 3D last result obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the last designed with the proposed scheme has good performance.

족압 균등화 FFD(UFPFFD)를 이용한 라스트 설계 (A Last Design Utilizing an Uniform Foot Pressure FFD(UFPFFD))

  • 장유성;이희만;김시경
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2005
  • This paper presents a 3D last design system utilizing an uniform foot pressure FFD method. The proposed uniform foot pressure FFD(UFPFFD) is operated on the rule of foot pressure unbalance analysis and FFD. The deformation factor of the UFPFFD is constructed on the FFD lattice with the foot pressure unbalance analysis on the measured 3D foot bottom shape. In addition, the control points of FFD lattice are decided on the anatomical point and the foot pressure distribution. The 3D last design result obtained from the proposed UFPFFD is saved as a 3D dxf data format. The experimental results demonstrate that the proposed last design guarantees the balanced foot pressure distribution against on the conventional last design method.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

자유형 변형 축을 이용한 이미지 변형 (Image deformation using freeform deformation axis)

  • 손의성;최윤철
    • 한국멀티미디어학회논문지
    • /
    • 제17권10호
    • /
    • pp.1229-1238
    • /
    • 2014
  • Various 2D Shape deformation techniques has been presented recently. Concerning intuitive control of deformation, gradient domain 2D deformation techniques have an advantage over FFD(Free-form deformation) approaches, since they can deform objects with less control points. However, semantic shape properties such as thickness or length are difficult to handle in these approaches due to they treat the whole shape as a simple flat shape without structural meaning. In this paper, we propose a 2D shape deformation algorithm that deforms shapes using thin, deformable skeletal structure called freeform deformation axis (FDA). This concept separates the target shape and the deformable structure and thus enables user to manipulate shapes more intuitively.

Optimization Approach for a Catamaran Hull Using CAESES and STAR-CCM+

  • Yongxing, Zhang;Kim, Dong-Joon
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.272-276
    • /
    • 2020
  • This paper presents an optimization process for a catamaran hull form. The entire optimization process was managed using the CAD-CFD integration platform CAESES. The resistance of the demi-hull was simulated in calm water using the CFD solver STAR-CCM+, and an inviscid fluid model was used to reduce the computing time. The Free-Form Deformation (FFD) method was used to make local changes in the bulbous bow. For the optimization of the bulbous bow, the Non-dominated Sorting Genetic Algorithm (NSGA)-II was applied, and the optimization variables were the length, breadth, and angle between the bulbous bow and the base line. The Lackenby method was used for global variation of the bow of the hull. Nine hull forms were generated by moving the center of buoyancy while keeping the displacement constant. The optimum bow part was selected by comparing the resistance of the forms. After obtaining the optimum demi-hull, the distance between two demi-hulls was optimized. The results show that the proposed optimization sequence can be used to reduce the resistance of a catamaran in calm water.

조영 전후의 폐 CT 영상 정합을 위한 특징 기반의 비강체 정합 기법 (Feature-based Non-rigid Registration between Pre- and Post-Contrast Lung CT Images)

  • 이현준;홍영택;심학준;권동진;윤일동;이상욱;김남국;서준범
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.237-244
    • /
    • 2011
  • In this paper, a feature-based registration technique is proposed for pre-contrast and post-contrast lung CT images. It utilizes three dimensional(3-D) features with their descriptors and estimates feature correspondences by nearest neighborhood matching in the feature space. We design a transformation model between the input image pairs using a free form deformation(FFD) which is based on B-splines. Registration is achieved by minimizing an energy function incorporating the smoothness of FFD and the correspondence information through a non-linear gradient conjugate method. To deal with outliers in feature matching, our energy model integrates a robust estimator which discards outliers effectively by iteratively reducing a radius of confidence in the minimization process. Performance evaluation was carried out in terms of accuracy and efficiency using seven pairs of lung CT images of clinical practice. For a quantitative assessment, a radiologist specialized in thorax manually placed landmarks on each CT image pair. In comparative evaluation to a conventional feature-based registration method, our algorithm showed improved performances in both accuracy and efficiency.