• Title/Summary/Keyword: free-flow speed

Search Result 241, Processing Time 0.026 seconds

Determination of Deceleration Lane Length in Interchange with Shock-Wave Theory (충격파를 고려한 입체교차로의 감속차로 길이 산정방안)

  • Kim, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • Current highway design standards is based on the safety under the free flow condition. The length of deceleration lane is also determined in terms of the deceleration distance which is necessary for the driers to adjust the vehicle speed from the speed limit on the main road to that on the exit ramp of the interchange. However, the queues are frequently developed on the deceleration, and the following vehicles to exit must decelerate on the main road. It may cause delay on the main road and traffic accidents. This study is to suggest a methodology to minimize such problems with the shock-wave theory. The queue length of exiting vehicles can be estimated by the design speeds, traffic volumes of main road and the exiting ramp, and the countermeasures to the operational problems. According to the results, the queue length can be shortened to 80% by upgrading the design speed of exit ramp as the amount of 10km/h. Fifty percent of queue length can be shortened by adding an additional lane on the ramp to two lanes.

  • PDF

Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion (혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발)

  • Kim Yong-Hoon;Lee Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.1-12
    • /
    • 2006
  • In order to estimate a dynamic origin and destination demand between on and off-ramps in the freeways, a traffic flow theory can be used to calculate a link distribution proportion of traffics moving between them. We have developed a dynamic traffic estimation model based on the three-phase traffic theory (Kerner, 2004), which explains the complexity of traffic phenomena based on phase transitions among free-flow, synchronized flow and moving jam phases, and on their complex nonlinear spatiotemporal features. The developed model explains and estimates traffic congestion in terms of speed breakdown, phase transition and queue propagation. We have estimated the link, on and off-ramp volumes at every time interval by using traffic data collected from vehicle detection systems in Korea freeway sections. The analyzed results show that the developed model describes traffic flows adequately.

  • PDF

Computational Study of the Scale Effect on Resistance and Propulsion Performance of VLCC (대형 유조선의 저항 및 추진성능에 대한 축척효과의 수치적 연구)

  • Choi, Jung-Eun;Kim, Jung-Hun;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.222-232
    • /
    • 2011
  • This article examines the scale effect of the flow characteristics, resistance and propulsion performance on a 317k VLCC. The turbulent flows around a ship in both towing and self-propulsion conditions are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out in both model- and full-scale. A double-body model is applied for the treatment of free surface. An asymmetric body-force propeller is used. The speed performances including resistance and propulsion factors are obtained from two kinds of methods. One is to analyze the computational results in model scale through the revised ITTC' 78 method. The other is directly to analyze the computational results in full scale. Based on the computational predictions, scale effects of the resistance and the self-propulsion factors including form factor, thrust deduction fraction, effective wake fraction and various efficiencies are investigated. Scale effects of the streamline pattern, hull pressure and local flow characteristics including x-constant sections, propeller and center plane, and transom region are also investigated. This study presents a useful tool to hull-form and propeller designers, and towing-tank experimenters to take the scale effect into consideration.

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

Modeling Three-dimensional Free Surface Flow around Thin Wall Incorporation Hydrodynamic Pressure on δ-coordinate (δ-좌표계에서 동수압 계산 수중벽체 인근흐름 수치모형실험)

  • Kim, Hyo-Seob;Yoo, Ho-Jun;Jin, Jae-Yul;Jang, Chang-Hwan;Lee, Jung-Su;Baek, Seung-Won
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.327-336
    • /
    • 2014
  • Submerged thin walls are extreme case of submerged rectangular blocks, and could be used for many purposes in rivers or coastal zones, e.g. to tsunami. To understand flow characteristics including flow and pressure fields around a specific submerged thin wall a numerical model was applied which includes computation of hydrodynamic pressure on ${\sigma}$-coordinate. ${\sigma}$-coordinate has strong merits for simulation of subcritical flow over mild-sloped beds. On the other hand ${\sigma}$-coordinate is quite poor to treat sharp structures on the bed. There have been a few trials to incorporate dynamic pressure in ${\sigma}$-coordinate by some researchers. One of the previous approaches includes process of sloving the Poisson equation. However, the above method includes many high-order terms, and requires long cpu for simulation. Another method SOLA was developed by Hirt et al. for computation of dynamic pressure, but it was valid for straight grid system only. Previous SOLA was modified for ${\sigma}$-coordinate for the present purpose and was adopted in a model system, CST3D. Computed flow field shows reasonable behaviour including vorticity is much stronger than the upstream and downstream of the structure. The model was verified to laboratory experiments at a 2DV flume. Time-average flow vectors were measured by using one-dimensional electro-magnetic velocimeter. Computed flow field agrees well with the measured flow field within 10 % error from the speed point of view at 5 profiles. It is thought that the modified SOLA scheme is useful for ${\sigma}$-coordinate system.

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor (풍력터빈 후류 유동특성 측정 데이터를 이용한 Eddy Viscosity 및 Lange 후류모델의 예측 정확도 검증)

  • Jeon, Sang Hyeon;Go, Young Jun;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

Input Shaping for Control of Liquid Sloshing (액체 슬로싱 제어를 위한 입력성형)

  • Kim, Dong-Joo;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1018-1024
    • /
    • 2011
  • Liquid sloshing occurs when a partially filled liquid tank is subjected to undesirable external forces or acceleration/deceleration for positioning control. Installation of baffles is still the most popular way to suppress the sloshing, but recent successes of input shaping in reducing structural vibrations may give a possible alternative. We aim at investigating the applicability of input shaping to sloshing suppression by numerically solving fluid motions in a rectangular tank. The tank is partially filled with water and it is suddenly put into a sequence of horizontal motions of acceleration and constant speed. The flow is assumed to be two-dimensional, incompressible, and in viscid, and a VOF two-phase model is used to capture the free surface. Results show that the sloshing can be successfully suppressed by shaping the input, i.e., the velocity or acceleration profile of tank. Three different input shapers (ZII, ZVD, and two-mode convolved ZV shapers) are tested and compared in this study Among them, the convolved ZV shaper shows a best performance to eliminate the sloshing almost completely.

Experimental and Computational Investigation of Aerodynamic Characteristics of Hovering Coleoptera

  • Saputra, Saputra;Byun, Do-Young;Yoo, Yong-Hoon;Park, Hoon-Choel;Byun, Yong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.384-388
    • /
    • 2007
  • Aerodynamic characteristics of Coleoptera species of Epilachna quadricollis and Allomyrina dichotoma are experimentally and numerically investigated. Using digital high speed camera and smoke wire technique, we visualized the continuous wing kinematics and the flight motion of free-flying coleoptera. The experimental visualization shows that the elytra flapped concurrently with the main wing both in the downstroke and upstroke motions. The wing motion of Epilachna quadricollis was captured and analyzed frame by frame to identify the kinematics of the wings and to implement it in the movement of a model wing (thin plate) in the simulation. The two-dimensional simulation of Epilachna quadricollis hovering flight was performed by assuming the wing cross section shape as a thin plate, even though most of insect's wings are made of curved corrugated membrane. The effect of Reynolds number are investigated by the simulation. Meanwhile, in order to investigate the role and effect of elytra, the flow visualization of Allomyrina dichotoma was carried on using smoke wire visualization technique. Here, we confirmed that the vortex generated by elytra due to its movement is strongly influence the vortex dynamic generated by hind wings.

  • PDF