• 제목/요약/키워드: free vibration test

검색결과 241건 처리시간 0.021초

워터젯 자유면을 이용한 암반발파 굴착공법의 효과 (Effects of free surface using waterjet cutting for rock blasting excavation)

  • 오태민;조계춘;지인택
    • 한국터널지하공간학회 논문집
    • /
    • 제15권1호
    • /
    • pp.49-57
    • /
    • 2013
  • 기존 발파를 이용한 암반굴착 공법은 효율적이나 심각한 수준의 발파진동 및 여굴/미굴을 발생시킨다. 이러한 단점을 보완하기 위해, 본 연구에서는 워터젯 절삭기술을 이용하여 터널 계획선을 따라 자유면을 형성한 후 발파하는 공법을 제안하고 있다. 제안공법은 (1) 발파진동/소음을 저감시키고, (2) 여굴/미굴을 최소화 시키고, (3) 굴착효율 극대화가 가능하다. 제안공법의 효과를 검증하기 위해 기존에 널리 쓰이고 있는 스무스 블라스팅(smooth blasting) 공법을 실험 대조군으로 설정하여 동일한 조건에서 현장실험을 수행하였다. 실험결과, 발파 진동은 최대 55% 감소하고 여굴/미굴은 거의 발생하지 않는 것으로 확인되었다. 또한 굴착효율은 기존공법에 비해 뛰어난 것으로 분석되었다. 본 연구에서 제안하고 있는 워터젯 자유면을 이용한 암반 발파공법은 도심지 굴착공사뿐만 아니라 지하구조물 구축공사에 널리 활용될 수 있을 것으로 기대된다.

다양한 형상을 갖는 복합재료 판의 자유진동에 대한 실험적 연구 (An Experimental Study on the Free Vibration of Composite Plates with Various Shapes)

  • 이영신;최명환
    • Composites Research
    • /
    • 제12권1호
    • /
    • pp.47-58
    • /
    • 1999
  • 다양한 형상 및 경계조건을 갖는 적층 복합재료 및 혼합적층 복합재료 판의 자유진동해석을 위한 실험적 연구결과에 대하여 고찰하였다. 실험에 사용한 판의 재료는 탄소섬유강화(CFRP), 유리섬유강화(GFRP) 복합재료, 알루미늄-GFRP, CFRP-GFRP 혼합적층 복합재료이다. 충격해머와 가속도계를 이용한 충격가진법을 통하여 판의 고유진동수 및 노달패턴을 얻었고, 결과는 무차원화된 진동수매개변수로 제시하였다. 복합재료의 물성, 적층강도, 판의 기하학적 형상과 경계조건 등이 복합재료 판의 진동특성에 미치는 영향에 대하여 평가하였다. 실험결과의 비교/검증을 위하여 유한요소해석을 수행하였고, 서로 잘 일치함을 보였다.

  • PDF

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

자유 음장 조건에서 개선된 빔형성 방법을 이용한 흡음재의 수직 입사 표면 임피던스 측정 (Measurement of Normal Incidence Surface Impedance of Absorbing Materials Using the Improved Beamforming Method in a Free Field)

  • 신창우;선종천;강연준;백순권
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.598-605
    • /
    • 2008
  • An improved beamforming method is proposed to measure the surface impedance of absorbing materials in a free field. It is possible to estimate the surface impedance by decomposing measured signals into incident and reflected signals by using the spatial filter matrix of the beamforming method. Wavelet do-noising techniques which reduce the white Gaussian noise are applied to improve the results. Phase calibration method is also used to improve the results of the measured surface impedance in a low frequency range. The results of the normal incidence experiments that are performed in a semi-anechoic chamber are verified by comparing with those of the standard test method that is presented in ASTM E1050. The proposed method is found to be reliable to measure the surface impedance for frequencies higher than 400 Hz.

대형선박의 추진기 진동 모우드 특성 (Vibration Mode Characteristics on a Propeller in very Large Vessel)

  • 김재홍;조대승;한성용
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

모의 수송환경에서의 적재된 골판지 포장화물 내 배의 진동특성 (Vibration Characteristics of the Pears in Corrugated Fiberboard Container for Packaging be stacked at Simulated Transportation Environment)

  • 정현모;박인식;김만수
    • 한국포장학회지
    • /
    • 제11권1호
    • /
    • pp.11-16
    • /
    • 2005
  • Fruits are subjected to complex dynamic stresses in the transportation environment. During a long journey form the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The first frequency of the pear in packaged freight be stacked in resonance frequency band of the pear packaged freight was increased from the bottom to the top of the stack but the second frequency of that in resonance frequency band of the pear was decreased. This indicated that the high damage score of the pear in bottom tier in vibration test was due to higher acceleration level in resonance frequency band of the pear.

  • PDF

샌드위치 플레이트 시스템을 이용한 합성보의 동적 특성 (Dynamic Characteristic of Composite Beam using the Sandwich Plate System)

  • 류재호;주영규;윤성원
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.65-72
    • /
    • 2014
  • To improve the noise and vibration problems of the existing public parking systems, new floor system was proposed. This system consists of the Sandwich Plate System(SPS), steel beam and post-tensioned steel tendons. To verify the dynamic characteristics such as the natural frequency and damping ratio of the system, the free vibration test was performed. Test results showed that the natural frequency of the SPS composite beam was 23.8Hz and it was increased by 3.8% by installing the post-tensioned tendons. The damping ratio of the specimen with tendons was about 1.64%.

모드 주파수를 이용한 모델 개선 과정에 대한 연구 (A Study on the Model Updating Procedures Using Modal Frequencies)

  • 장인식
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.109-116
    • /
    • 2010
  • It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.