• 제목/요약/키워드: free transverse vibration

검색결과 218건 처리시간 0.023초

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

다중 크랙이 있는 복합재료 보의 자유진동 특성 (Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks)

  • 하태완;송오섭
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.9-20
    • /
    • 2000
  • 모든 층을 한 방향으로 적층하여 횡방향 굽힘과 축방향 인장운동이 연성되어 나타나는 복합재료 외팔보에 다중횡방향 개구형 크랙이 있는 경우에 대하여 자유진동 특성을 고찰하였다. 모든 크랙 위치에서의 파괴역학적 특성을 스프링 상수로 변환하여 산출하고 크랙사이 구간의 보를 전단변형 및 회전관성효과를 포함하여 해밀톤 원리로부터 운동방정식 및 경계조건을 유도하고, 라플라스 변환법을 사용하여 자유진동 특성에 관한 해를 구하였다. 복합재료의 설계 변수로서 섬유 체적비와 적층각을 설정하였으며, 크랙의 외형적 변수로서 크랙의 갯수, 분포 위치 및 크랙 깊이를 설정하여 이들 변수에 대한 고유진동수 및 모드형상의 변화 경향을 도출함으로써 임의의 다수 크랙이 분포되어 있는 보다 실제적인 상황에서의 진동변화에 근거를 둔 비파괴 검사가 이루어질 수 있는 방안에 대하여 연구하였다. 해석 결과 복합재료 보에 단일 크랙이 있는 경우에 비해 다중 크랙이 있는 경우가 여러 가지 변수에 대해 훨씬 복잡한 형태로 나타나고 있음을 보여준다.

  • PDF

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • 제9권6호
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.

Buckling and free vibration analysis of multi-directional functionally graded sandwich plates

  • Ali, Alnujaie;Atteshamuddin S., Sayyad;Lazreg, Hadji;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.813-822
    • /
    • 2022
  • In this article, the buckling and free vibration of multi-directional FGM sandwich plates are investigated. The material properties of FGM sandwich plates are assumed to be varying continuously in the in the longitudinal, transverse and thickness directions. The material properties are evaluated based on Voigt's micro-mechanical model considering power law distribution method with arbitrary power index. Equations of motion for the buckling and vibration analysis of multi-directional FGM sandwich plate are obtained based on refined shear deformation theory. Analytical solution for simply supported multidirectional FGM sandwich plate is carried out using Navier's solution technique. The FGM sandwich plate considered in this work has a homogeneous ceramic core and two functionally graded face sheets. Influence of volume fraction index in the longitudinal, transverse and thickness direction, layer thickness, and geometrical parameter over natural frequency and critical buckling load of multi-directional FGM sandwich plate is investigated. The finding shows a multi-directional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters have been identified which will guide researchers in selecting fabrication routes for improving the performance of such structures.

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

A n-order four variable refined theory for bending and free vibration of functionally graded plates

  • Djedid, I. Klouche;Benachour, Abdelkader;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Ameur, Mohammed
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.21-46
    • /
    • 2014
  • This paper presents a simple n-order four variable refined theory for the bending and vibration analyses of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구 (Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.