• Title/Summary/Keyword: free surface tracking

Search Result 44, Processing Time 0.03 seconds

Parametric Study on the $LiBr-H_{2}O$ Absorption Process on Horizontal Tubes Using Wavier-Stokes Equations (Navier-Stokes 방정식을 사용한 수평원관상의 $LiBr-H_{2}O$ 흡수특성에 대한 연구)

  • Min J. K.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.213-218
    • /
    • 1999
  • The $LiBr-H_{2}O$ absorption process on a horizontal tube has been analyzed using the numerical method which incorporates the fully elliptic Navier-Stokes equations for the momentum equations, the energy and mass-diffusion equations. On a staggered grid, the SIMPLER algorithm with the QUICK scheme is used to solve these equations along with the MAC method for the free surface tracking. With the assumption that the absorbent is linear, calculations have been made for various inlet temperature and flow-rate conditions. The detailed results of the parametric study, such as the temperature, concentration, absorption mass flux and wall heat flux distributions are presented. The self-sustained feature of the absorption process is clearly elaborated. The analyses have also been carried out for multiple tube arrangement and the results show that the absorption rate converges after a few tube rows.

  • PDF

The Application of FBNWT in Wave Overtopping Analysis

  • Liu, Zhen;Jin, Ji-Yuan;Hyun, Beom-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A 2-D Fluent-based numerical wave tank(FBNWT) capable of simulating wave propagating and overtopping is presented. The FBNWT model is based on the Reynolds averaged Naiver-Stokes equations and VOF free surface tracking method. The piston wave maker system is realized by dynamic mesh technology(DMT) and user defined function(UDF). The non-iteration time advancement(NITA) PISO algorithm is employed for the velocity and pressure coupling. The FBNWT numerical solutions of linear wave propagation have been validated by analytical solutions. Several overtopping problems are simulated and the prediction results show good agreements with the experimental data, which demonstrates that the present model can be utilized in the corresponding analysis.

A Numerical Study of the Melt Puddle Formation in the Flow Casting, (Planar Flow Casting의 퍼들 형성에 관한 수치해석)

  • Kim, Yeong-Min;Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1365-1372
    • /
    • 2001
  • In the planar flow casting(PFC) process, the conditions of the melt puddle between nozzle and rotating wheel affect significantly the quality and dimensional uniformity of the downstream ribbon. For stable puddle formation, the nozzle is placed very close to the quenching wheel, so the surface-tension and wall-adhesion forces have an important effect upon the fluid flow.\`In this study the planar flow casting process has been mode]ed using the VOF method for free surface tracking. The transient puddle formation from the present analysis shows good agreements with the previous experimental results. Furthermore, the variation of melt temperature and the corresponding cooling rate of the melt have been examined. The present results also show how the melt puddle can be farmed on the rotating substrate, how the melt flows within the puddle, and how the changes of the process variables affect the puddle formation and its corresponding fluid flow and heat transfer behavior.

Development of a New Simulation Method of Casting Process Based on a Cylindrical Coordinate System (원통좌표를 이용한 주조공정의 수치해석모델 개발)

  • Mok, Jin-Ho;Park, Seong-Joon;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.433-440
    • /
    • 2004
  • Since the numerical analysis was adopted in the mold design, lots of computational methods have been proposed for the simulations of casting processes for the various shaped molds. Today, it is possible to simulate the filling and solidification processes of most casts using the VOF technique. Though the three-dimensional numerical model based on the Cartesian coordinate system can be applied to any shape of cast, it becomes very inefficient when the three-dimensional model is applied to the cast of axi-symmetrical shape since the control volume includes at least 11 of the physical model. In addition, the more meshes should be distributed along the circumferential boundaries of curved shape in the Cartesian coordinate system fur the better results, while such curved circumferential boundary does not need to be considered in the two-dimensional cylindrical coordinate system. This motivates the present study i.e. developing a two-dimensional numerical model for the axi-symmetrically shaped casts. The SIMPLER algorithm, the VOF method, and the equivalent specific heat method have been adopted in the combined algorithm for the flow calculation, the free surface tracking, and the phase change heat transfer, respectively. The numerical model has been applied to the casting process of a pulley, and it was proven that the mesh and time effective calculation was accomplished comparing to the calculation using three-dimensional model.

Numerical Investigation on Two-Dimensional Inviscid Edge Receeding of a Stationary Fluid Sheet (정지된 2차원 액체 필름 끝단의 비점성 수축특성에 관한 수치연구)

  • Ahn, Ja-Il;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.107-111
    • /
    • 2007
  • A two-dimensional numerical method for inviscid two-fluid flows with evolution of density interface is developed, and an initially stationary two-dimensional fluid sheet surrounded by another fluid is studied. The interface between two fluids is modeled as a vortex sheet, and the flow field with the evolution of interface is solved by using vortex-in-cell/front-tracking method. The edge of the sheet is pulled back into the sheet due to surface tension and a blob is formed at the edge. This blob and fluid sheet are connected by a thin neck. In the inviscid limit, such process of the blob and neck formation is examined in detail and their kinematic characteristics are summarized with dimensionless parameters. The edge recedes at and the capillary wave propagating into the fluid sheet must be considered for better understanding of the edge receding.

  • PDF

Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation (수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교)

  • Park, Il-Seouk;Kim, Young-Jo;Min, June-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1169-1176
    • /
    • 2011
  • Liquid film flows are classified into waveless laminar, wavy laminar, and turbulent flows depending on the Reynolds number or the flow stability. Since the wavy motions of the film flows are so intricate and nonlinear, studies on them have largely been experimental. Most numerical approaches have been limited to the waveless flow regime. The various free surface-tracking schemes adopted for this problem were used to more accurately estimate the average film thickness, rather than to capture the unsteady wavy motion. In this study, the wavy motions in laminar wavy liquid film flows with Reynolds numbers of 200-1000 were simulated with various numerical schemes based on the volume of fluid (VOF) method for interface tracking. The results from each numerical scheme were compared with the experimental results in terms of the average film thickness, the wave velocity, and the wave amplitude.

Potential for Development of Bank Filtrate in the Nakdong River Basin (낙동강 유역의 강변여과수 개발 가능성)

  • 전흥배;김상일
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.4
    • /
    • pp.99-116
    • /
    • 1997
  • In order to obtain safe drinking water, free from surface contamination, a study to determine the potential for developing a bank-filtrate system in the Iryong and Yongsan, Nakdong River Basin, Korea was conducted. The main type of aquifer In the study area is alluvial, consisting mostly of sand and gravel. The hydraulic conductivity(k) of the Iryong and Yongsan test areas were 8.63${\times}$10$^-2$cm/s and 9.90${\times}$10$^-2$cm/s, respectively, indicating that these areas are satisfactory for bank filtrate production. Pilot plants(IRPL and YSPL) were set up In Iryong and Yongsan to monitor the change in the quality of bank-filtered water and to determine the effect pumping had on the surrounding hydrogeologic system. The pilot plants operated continuously for about two months and the data obtained were used to validate the groundwater flow model. Computer simulations were conducted to predict the effects of producing bank filtrate using MODFLOW. MODPATH was also linked with the flow model to analyze particle tracking. According to the results of the model simulations and the hydrogeologlc study, long-term pumping, the minimization of drawdown and the availability of uncontaminated sell and groundwater conditions for the catchment area were all Important factors for successful bank-titrate system development.

  • PDF

Parametric Study on the $LiBr-H_2O$ Absorption Process on Horizontal Tubes (수평원관상의 $LiBr-H_2O$ 흡수특성에 대한 연구)

  • Min J. K.;Choi D. H.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • The LiBr-H₂O absorption process on a horizontal tube has been analyzed numerically. The flow field, which was calculated in the authors' previous study by solving the fully elliptic Navier-Stokes equations with accurate free-surface-tracking method, is used to solve the temperature and concentration distributions in the absorption film. With the assumption that the absorbent is linear, calculations have been made for various inlet temperature and flow-rate conditions. For low inlet temperature, the absorption rate is large in the upstream region but the mean temperature also increases and as a result the absorption decreases as the film flows to downstream while high-inlet-temperature case does the opposite. The difference in the absorption rate due to the inlet temperature change becomes smaller in the downstream than that in the upstream. For large flow rate, the heat transfer to the wall becomes poor due to the thick film and so does the absorption rate. The analyses have also been carried out for multiple tube arrangement and the results show that the absorption rate converges after a few tube rows.

  • PDF

Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem (2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구)

  • Yum, Duek-Joon;Du, Hun;Kim, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3374-3383
    • /
    • 2011
  • In this study, numerical analyses for slamming impact phenomena have been carried out using a 2-dimensional wedge shaped structure having finite deadrise angles. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct(or PLIC-VOF) scheme is used for the tracking of the deforming free surface. Numerical analyses are carried out for the deadrise angles of $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$. For each deadrise angle, variations are made for the grid size on the wedge bottom and for the entry speed. The magnitude and the location of impact pressure and the total drag force, which is the summation of pressure distributed at the bottom of the structure, are analyzed. Results of the analyses are compared with the results of the Dobrovol'skaya similarity solutions, the asymptotic solution based on the Wagner method and the solution of Boundary Element Method(BEM).

Optimal Scheduling of Satellite Tracking Antenna of GNSS System (다중위성 추적 안테나의 위성추적 최적 스케쥴링)

  • Ahn, Chae-Ik;Shin, Ho-Hyun;Kim, You-Dan;Jung, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.666-673
    • /
    • 2008
  • To construct the accurate radio satellite navigation system, the efficient communication each satellite with the ground station is very important. Throughout the communication, the orbit of each satellite can be corrected, and those information will be used to analyze the satellite satus by the operator. Since there are limited resources of ground station, the schedule of antenna's azimuth and elevation angle should be optimized. On the other hand, the satellite in the medium earth orbit does not pass the same point of the earth surface due to the rotation of the earth. Therefore, the antenna pass schedule must be updated at the proper moment. In this study, Q learning approach which is a form of model-free reinforcement learning and genetic algorithm are considered to find the optimal antenna schedule. To verify the optimality of the solution, numerical simulations are conducted.