• Title/Summary/Keyword: free repair warranty

Search Result 14, Processing Time 0.024 seconds

A Bayesian Approach to Optimal Replacement Policy for a Repairable System with Warranty Period

  • Jung, Gi-Mun;Han, Sung-Sil
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This paper considers a Bayesian approach to determine an optimal replacement policy for a repairable system with warranty period. The mathematical formula of the expected cost rate per unit time is obtained for two cases : RFRW(renewing free-replacement warranty) and RPRW(renewing pro-rata warranty). When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal replacement policy. Some numerical examples are presented for illustrative purpose.

Item Replacement Policy with Minimal Repair in Stepdown Warranty Model

  • Jae Joong, Kim;Won Joong, Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.87-92
    • /
    • 1995
  • This paper proposes age replacement policy in stepdown warranty policy. The replacement policy is considered in case of minimally repairable items. And renewal theory is used in analyzing warranty costs. The expected cost per unit time is presented in stepdown warranty policy, free replacement, prorata and hybrid policy. In this article it is assumed that item is replaced at the age of T but the any failure is minimally repaired before the age T. At this point the expected cost per unit time is shown in customer's view point. And numerical example is explored in weibull time-to-failure distribution.

  • PDF

A Warranty Policy with Replacement and Repair Periods (교체와 수리기간을 가진 보증정책)

  • 윤원영;유승효
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • This paper compares the two policies which are unsed in Korean electronic appliance industry. Policy I is a general warranty policy under which all of failures during warrenty period (12 months) are repaired without charge. Policy II was proposed recently by a company. Under Policy II, when the product fails until a certain times(6 months), the failed product will be replaced by the new product and all other failures from the certain time to the warrenty period (24 months) will be repaired free. We obtain the expected total warranty costs per product and necessary conditions under which the Policy II has a meaning in economic point of view without or with discount rate. Some numericla examples are considered.

  • PDF

Sensitivity Analysis of Burn-in Model considering Bimodal-Mixed Weibull Distribution under Free Warranty Policy (무료보증정책하에서 이봉-혼합 와이블 분포를 고려한 Burn-in 모형의 민감도 분석)

  • Song Suh-Ill;Jo Young-Chan;Park Hyun-Kyu;Shon Han-Deak
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.544-555
    • /
    • 1998
  • Although the bimodal mixed weibull distribution is used to developing burn-in model widely, the failure times for a component or a system is often truncated at some time, T, due to the obsolescence in the electronics industry. In this paper, we will determine minimum total cost and burn-in time by using the bimodal mixed weibull distribution and the truncated bimodal mixed weibull distribution under the free warranty policy. The results of this study are summarized as follows. First, when products or system is not repairable, the width of the change of burn-in time can be larger by ${\beta}_1,\;{\beta}_2$ Second, if burn-in time become longer, it will be impossible to consider the bum-in in a long time, and in this case, the burn-in time should be shorten by the acceleration burn-in. Third, in case that opportunity loss cost or repair cost is exceed the warranty cost, or the total cost of considering burn-in is larger than that of not considering burn-in, it is not existed burn-in time which makes total cost to minimize. Forth, the shorter life-cycle of product, the more burn-in times will be decreased and the cost in considering burn-in will be increased

  • PDF