• 제목/요약/키워드: free radical damage

Search Result 377, Processing Time 0.024 seconds

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Antioxidative Effect of Rhus javanica Linne Extract Against Hydrogen Peroxide or Menadione Induced Oxidative Stress and DNA Damage in HepG2 Cells

  • Chun, Chi-Sung;Kim, Ji-Hyun;Lim, Hyun-Ae;Sohn, Ho-Yong;Son, Kun-Ho;Kim, Young-Kyoon;Kim, Jong-Sang;Kwon, Chong-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.150-155
    • /
    • 2004
  • The free radical scavenging activities and the protective effects of Rhus javanica extracts against oxidative damage induced by reactive oxygen species (ROS) were investigated. n-Hexane, ethyl acetate and water fractions were prepared from a methanol extract. DPPH radical, superoxide anion and hydroxyl radical scavenging activities were estimated. Intracellular ROS formation was quantified using fluorescent probes, 2', 7'-dichlorofluorescin diacetate (DCFH-DA) for hydroxyl radical and dihydroethidium (DHE) for superoxide anion. The oxidative DNA damage was investigated by the comet assay in HepG$_2$ cells exposed either to $H_2O$$_2$ or to menadione. The highest $IC_{50}$/ values for DPPH radical scavenging activity was found in the ethyl acetate fraction with a value of 5.38 $\mu\textrm{g}$/mL. Cells pretreated with $\geq$ 1 $\mu\textrm{g}$/mL of the ethyl acetate extract had significantly increased cell viability compared to control cells, which were not pretreated with the extract. Intracellular ROS formation and DNA damage in HepG$_2$ cells, which were pretreated with the various concentrations of Rhus javanica ethyl acetate extract and then incubated either with $H_2O$$_2$ or with menadione, reduced in a dose-dependent manner. These findings suggest that Rhus javanica might have biologically active components which have strong protective effects against ROS induced oxidative damages to the biomolecules, such as cell membranes and DNA.

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2329-2332
    • /
    • 2007
  • Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

Protection of Radiation induced Somatic Damage by the Reduction of Oxidative Stress at Critical Organs of Rat with Naringenin Administration

  • Park, Ji Eun;Kang, Seong Hee;Kim, Hyun Mi;Kim, Suk Hee;Kang, Bo Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.829-834
    • /
    • 2016
  • Free radicals originate due to the radiolysis of cytoplasmic water with low "Linear Energy Transfer" (LET) radiations. Naringenin (Ng) is a natural antioxidative compound found in citrus fruits. This study revealed that Naringenin (Ng) reduced the radiation damage of critical organs by scavenging oxidative free radicals. In the study, Ng was orally administrated to rats daily for 7 consecutive days, prior to whole body exposure to gamma-rays. The scavenging efficacy was evaluated biochemically by measuring the concentration of cytotoxic byproducts and the activity of enzymes relevant to oxidative free radicals, after extracting the organs from the exposed rat. We observed increased levels of malondialdehyde (MDA) concentration, and decrease in the activities of superoxide dismutase (SOD) and catalase (CAT) in the exposed control group. However, pretreatment with Ng significantly reduced the MDA concentration, and increased the activities of SOD and CAT, as compared to the control group, due to the free radical scavenging by Ng. The results indicate that Ng administration prior to irradiation could protect critical organs from radiation damage.

Catechin with Hepatoprotective Effect of the Leaves of Juglans sinensis

  • Kim, Mi-Hee;Jun, Jung-Yang;Ko, Eun-Kyung;Park, Sung-Uk;An, Nyeong-Hyung;Kim, Youn-Chul
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.263.2-263.2
    • /
    • 2003
  • There is now increasing evidence that free radicals and active oxygen species are involved in a variety of pathological events. Free radical-mediated cell damage and free radical attack on polyunsaturated fatty acids result in the formation of lipid radicals. These lipid radicals react readily with molecular oxygen to produce peroxy radicals responsible for initiating lipid peroxidation. The peroxidation of cellular membrane lipid can lead to cell necrosis and considered to ve implicated in a number of pathophysiological conditions including liver disease. (omitted)

  • PDF

Adenophora remotiflora protects human skin keratinocytes against UVB-induced photo-damage by regulating antioxidative activity and MMP-1 expression

  • Kim, Hye Kyung
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.371-376
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Chronic ultraviolet (UV) exposure-induced reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases (MMP) that break down type I collagen. Adenophora remotiflora (AR) is a perennial wild plant that inhabits Korea, China, and Japan. The present study investigated the protective effects of AR against UVB-induced photo-damage in keratinocytes. MATERIALS/METHODS: An in vitro cell-free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and nitric oxide (NO). The effect of AR on ROS formation, antioxidant enzymes, elastase, MMP-1 level, and mRNA expression of MMP-1 were determined in UVB-irradiated human keratinocyte HaCaT cells. RESULTS: AR demonstrated strong DPPH free radical and NO scavenging activity in a cell-free system exhibiting $IC_{50}$ values of 1.88 mg/mL and 6.77 mg/mL, respectively. AR pretreatment dose-dependently attenuated the production of UVB-induced intracellular ROS, and antioxidant enzymes (catalase and superoxide dismutase) were enhanced in HaCaT cells. Furthermore, pretreatment of AR prevented UVB-induced elastase and collagen degradation by inhibiting the MMP-1 protein level and mRNA expression. Accordingly, AR treatment elevated collagen content in UVB-irradiated HaCaT cells. CONCLUSION: The present study provides the first evidence of AR inhibiting UVB-induced ROS production and induction of MMP-1 as a result of augmentation of antioxidative activity in HaCaT human keratinocytes. These results suggest that AR might act as an effective inhibitor of UVB-modulated signaling pathways and might serve as a photo-protective agent.

Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress

  • Kim, Boh Kyung;Choi, Ji Myung;Kang, Soon Ah;Park, Kun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.638-643
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Kimchi is a traditional Korean fermented vegetable containing several ingredients. We investigated the protective activity of methanol extract of kimchi under different fermentation stages against oxidative damage. MATERIALS/METHODS: Fresh kimchi (Fresh), optimally ripened kimchi (OptR), and over ripened kimchi (OvR) were fermented until the pH reached pH 5.6, pH 4.3, and pH 3.8, respectively. The radical scavenging activity and protective activity from oxidative stress of kimchi during fermentation were investigated under in vitro and cellular systems using LLC-$PK_1$ cells. RESULTS: Kimchi exhibited strong radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, superoxide anion, and hydroxyl radical. In addition, the free radical generators led to loss of cell viability and elevated lipid peroxidation, while treatment with kimchi resulted in significantly increased cell viability and decreased lipid peroxidation. Furthermore, the protective effect against oxidative stress was related to regulation of cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor-${\kappa}B$ p65, and $I{\kappa}B$ expression. In particular, OvR showed the strongest protective effect from cellular oxidative stress among other kimchi. CONCLUSION: The current study indicated that kimchi, particularly OptR and OvR, played a protective role against free radical-induced oxidative stress. These findings suggest that kimchi is a promising functional food with an antioxidative effect and fermentation of kimchi led to elevation of antioxidative activity.

Antioxidant Activity of a Red Seaweed Polysiphonia morrowii Extract

  • Je, Jae-Young;Ahn, Chang-Bum;Oh, Myung-Joo;Kang, So-Young
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.124-129
    • /
    • 2009
  • Antioxidant activities of the extract of red seaweed, Polysiphonia morrowii, were evaluated using several in vitro assay systems. Activity-guided fractionation revealed that the 90% MeOH fraction of the P. morrowii extract exhibited the highest antioxidant activity, and that this fraction had a high total phenolic content ($135.7{\pm}5.0\;mg$ gallic acid/g extract). Therefore, the antioxidant activities of the 90% MeOH fraction against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, reducing power, ferrous chelating, and hydrogen peroxide were investigated. The results revealed that the antioxidant activities of the 90% MeOH fraction were similar and/or superior to that of commercial antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). In addition, the ability of the 90% MeOH fraction to inhibit oxidative damage to DNA was assessed by measuring the conversion of the supercoiled pBR322 plasmid DNA to the open circular form. The 90% MeOH fraction was found to significantly protect this hydroxyl radical-induced DNA damage in a dose-dependent manner. Taken together, these findings suggest that the 90% MeOH fraction of P. morrowii extract and/or its constituents has the potential for use as a new bioresource of antioxidants.

Effects of Daehwanggamchoeumja and its component groups on diabetes, free radical and antioxidative defense system in Alloxan-induced diabetic rats (대황감초음자(大黃甘草飮子)와 그 구성약물군(構成藥物群)이 Alloxan 유도 당뇨(糖尿) 백서(白鼠)의 혈청 조성 및 항산화 효과에 미치는 영향)

  • Go Won-Do;Gwak Dong-Gul;Shin Hwa-Seog;Choi Oi-Chul;Park Sun-Dong
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.159-188
    • /
    • 2002
  • The purpose of this study was to reseach the effect of Daehwanggamchoeumja(大黃甘草飮子) and its component groups on diabetes, free radicals, and antioxidants system in Alloxan-induced diabetic rats. The experimental group was divided into three groups: Daehwanggamchoeumja(DG), and its components groups, Gamdutang (Gamcho&Daedu; DG-I) and Daehwanggamchotang(DG-2). The results were obtained as follows: 1. In the study of effect on diabetic metabolic dysfunction(Glucose, Triglyceride, Total Cholesterol, HDL Cholesterol, Total Protein, Albumin, Creatine, BUN), only DG has a significant effect. 2. In the study on free radical scavenging effect in vitro(the suppressing effect on peroxidation of linoleic acid on concentration, the scavenging effect of DPPH radical, inhibitory effect of superoxide in xanthine-xanthine oxidase system, inhibitory effect on lipid peroxidation reaction by hydroxy radical in $H_2O_2Fe^{2-}$system, and the effect on Nitrate reductase activity), DG and DG-2 have more effect than DG-l relatively. 3. In the study on antioxidants system in vivo(The level of serum LPO, The level of hepatic LPO, Catalase, GSH, GST), only DG has a significant effect. These results suggest that Daehwanggamchoeumja(大黃甘草飮子) has an effect on diabetes, peroxidative damage by free radical, so it seems to be useful to prevent and treat diabetes. The mechanisms of these are supposed to be involved in antioxidant and three drugs' cooperative synergy effect.

  • PDF

The Beneficial Effect of Melatonin for Toluene Hepatotoxicity in Rats

  • Bae, Si-Woo;Yoon, In-Sook
    • Biomedical Science Letters
    • /
    • v.7 no.3
    • /
    • pp.99-102
    • /
    • 2001
  • Toluene is mainly metabolized in liver by oxidative pathway. Oxigen free radicals occur through the process of toluene metabolism Therefore it causes tissue and cell min by the oxygen free radicals from the metabolism of toluene. Melatonin acts as a highly efficient free radical scavenger that protects cells from damage by oxygen free radicals. To test this hypothesis, toluene hepatotoxicity was induced by an abdominal injection of toluene. To see if the melatonin protects the rat's liver, melatonin was administrated orally, at the time of each toluene injection. Aspartate aminotransferase(AST), alanin aminotransferase(ALT), latic dehydrogenase(LDH) and alkaline phosphatase(ALP) levels in serum were measured to estimate hepatic function. Malondialdehyde(MDA), which gives an indirect index of oxidative injury was also measured. Hippuric acid is the last metabolic Production of toluene was measured by HPLC. There were significantly higher in AST, ALT, LDH, MDA and hippuric acid in toluene group, but there were no significant difference in melatonin group except ALT and hippuric acid. There was significantly lower in ALP level in toluene group, but there was no significant difference melatonin group, suggesting a significant hepatotoxicity due to oxygen free radicals through the process of toluene metabolism Melatonin treatment significantly protected hepatic function and free radical-mediated injury in the liver against toluene-induced changes. Accordingly, this study shows that melatonin is helpful in protecting liver injury by acute toluene intoxication.

  • PDF