• 제목/요약/키워드: free oscillation

검색결과 152건 처리시간 0.025초

회전요동하는 원통내의 유동 및 교반특성을 위한 수치해석적 연구 (Numerical Study on Fluid Flows and Stirring in a Circular Cylinder Subjected to Circulatory Oscillation)

  • 김현민;서용권
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.408-418
    • /
    • 1999
  • Incompressible flow inside a circular cylinder Including periodically oscillating free surface waves was studied primarily by using a numerical method. We developed a finite difference scheme based on the MAC method applicable to three-dimensional free-surface flows, and applied it to the present flow model to study tho flow characteristics as well as the fluid stirring. To verify the validity of our scheme, we performed a simple experiment for flow visualization. We found that the numerical results show a reasonable agreement with the observed flow patterns.

Saccharomyces cerevisiae의 생물시계와 초단기 대사진동 (Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae)

  • 권정숙;손호용
    • 생명과학회지
    • /
    • 제28권8호
    • /
    • pp.985-991
    • /
    • 2018
  • 생물시계(Biological clock)는 생명체에서 나타나는 반복되는 자율적인 리듬을 말하며, 단일세포는 물론 다세포 생명체의 기본적인 대사와 이에 따른 표현형과 행동을 직접적으로 조절하고 있다. 이러한 생물시계는 동면 리듬, 수면 리듬, 심장박동 리듬 및 짝짓기 노래 리듬 등 매우 다양하며, 24시간 이상의 주기를 infradian rhythm, 24시간 주기를 circadian rhythm, 24시간 이내의 짧은 주기를 ultradian rhythm으로 구분한다. 효모 Saccharomyces cerevisiae는 최소 5종 이상의 반복되는 자율적인 리듬이 알려져 있으며, 이중 일부는 생체시계로 인식되고 있다. 본 리뷰에서는 Saccharomyces cerevisiae의 glycolytic oscillation (T= 1~30분), cell cycle-dependent oscillation (T= 2~16 시간), ultradian metabolic oscillation (T= 15~50분), yeast colony oscillation (T= 수 시간) 및 circadian oscillation (T= 24시간)에 대한 연구 결과를 제시하고, 특히 ultradian metabolic oscillation의 특징, 집단 동조인자(population synchronizer), 동조인자의 조절 기작 및 효모 생물시계의 대사공학 분야의 이용성을 제시하여 효모를 이용한 동적 대사조절 및 생물시계 연구가 가능함을 제시하였다.

질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구 (Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen)

  • 윤성환;박정;권오붕;김정수
    • 대한기계학회논문집B
    • /
    • 제34권7호
    • /
    • pp.729-738
    • /
    • 2010
  • 질소로 희석된 부탄 층류 부상 화염에서 발생할 수 있는 화염진동 메커니즘을 살펴보기 위하여 실험적 연구를 수행하였다. 화염 진동은 층류 자유제트 부상 화염에서 5가지 영역으로 구분되었다: 화염 안정화 영역 (I), 열손실에 의한 진동 (II), 열손실에 의한 진동과 부력에 의한 진동이 혼재된 영역 (III),열손실에 의한 진동과 화염날림 직전의 진동이 혼재된 영역 (IV), 그리고 열손실에 의한 진동, 부력에 의한 진동 및 화염날림 직전의 진동이 모두 혼재된 영역(V). 각각의 화염진동의 특성을 규명하기 위해 화염의 시간에 따른 부상 높이 변화에 대한 FFT분석을 수행하였고 각 영역에 관련된 무차원 변수와 스트라훌 수의 조합으로 특성화 작업을 수행하였다.

회전요동하는 원통내의 유동특성 - 이론적 해석 (Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis)

  • 서용권;김현민
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석 (Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream)

  • 김정후;윤현식;;전호환
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성 (Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity)

  • 이진호;이동진;전창덕
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

수평진동이 있는 용기내 자성유체 액면 동요 현상에 관한 연구 (A Study on Fluid Surface Movement Phenomena of Magnetic Fluids in a Container Subjected to a Horizontal Oscillation)

  • 김대완;박정우;서이수
    • 한국자기학회지
    • /
    • 제22권5호
    • /
    • pp.183-187
    • /
    • 2012
  • 본 논문에서는 수평진동이 있는 용기내 자유표면을 갖는 자성유체에 용기하부로부터 수직자장을 인가시킨 경우 유동을 실험하였다. 실험은 직사각형 및 원통형 용기에 대해 자성유체에 인가된 자기력이 공진주파수, 액면변위에 미치는 영향을 조사하였다. 인가자장의 증가는 최대 공진점 및 액면변위에 영향을 미치고 그 결과 표면파의 진폭과 슬로싱 유동의 변동주기를 변화시킨다.

음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구 (An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave)

  • 강병하;문종훈;김호영
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

Subsurface structure of a sunspot inferred from umbral flashes

  • Cho, Kyuhyoun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.79.4-80
    • /
    • 2021
  • Sunspots' subsurface structure is an important subject to explain their stability and energy transport. Previous studies suggested two models for the subsurface structure of sunspots: monolithic model and cluster model. However, it is not revealed which model is more plausible so far. We obtain clues about the subsurface structure of sunspots by analyzing the motion of umbral flashes observed by the IRIS Mg II 2796Å slit-jaw images (SJI). The umbral flashes are believed as shock phenomena developed from upward propagating slow magnetohydrodynamic (MHD) waves. If the MHD waves are generated by convective motion below sunspots, the apparent origin of the umbral flashes known as oscillation center will indicate the horizontal position of convection cells. Thus, the distribution of the oscillation centers is useful to investigate the subsurface structure of sunspots. We analyze the spatial distribution of oscillation centers in the merged sunspot. As a result, we found that the oscillation centers distributed over the whole umbra regardless of the convergent interface between two merged sunspots. It implies that the subsurface structure of the sunspot is not much different from the convergent interface, and supports that many field-free gaps may exist below the umbra as the cluster model expected. For more concrete results, we should confirm that the oscillation centers determined by the umbral flashes accurately reflect the position of wave sources.

  • PDF