• Title/Summary/Keyword: free modules over a finite commutative rings

Search Result 2, Processing Time 0.014 seconds

FREE CYCLIC CODES OVER FINITE LOCAL RINGS

  • Woo, Sung-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.723-735
    • /
    • 2006
  • In [2] it was shown that a 1-generator quasi-cyclic code C of length n = ml of index l over $\mathbb{Z}_4$ is free if C is generated by a polynomial which divides $X^m-1$. In this paper, we prove that a necessary and sufficient condition for a cyclic code over $\mathbb{Z}_pk$ of length m to be free is that it is generated by a polynomial which divides $X^m-1$. We also show that this can be extended to finite local rings with a principal maximal ideal.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.