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FREE CYCLIC CODES OVER FINITE LOCAL RINGS
SuNG Sik Woo

ABSTRACT. In [2] it was shown that a 1-generator quasi-cyclic code
C of length n = m! of index [ over Z4 is free if C is generated by
a polynomial which divides X™ — 1. In this paper, we prove that
a necessary and sufficient condition for a cyclic code over Zyk of
length m to be free is that it is generated by a polynomial which
divides X™ — 1. We also show that this can be extended to finite
local rings with a principal maximal ideal.

1. Introduction

For a commutative ring A a linear code C of length n over A is an
A-submodule of A™. A linear code of length n = Im is called an quasi-
cyclic code of index [ if it is invariant under cyclic shift by [ position.
When | = 1 we simply say that C is a cyclic code. It is well known that
a cyclic code can be identified with an ideal of R := A[X]/(X™ —1) and
a quasi-cyclic code with a submodule of R'.

In [2], it was shown that a quasi-cyclic code over Z, generated by a,
single polynomial which divides X™ — 1 is free. In this paper we show
that a cyclic code C over a finite commutative local ring T is free if and
only if C' is generated by a polynomial dividing X™ — 1. For its proof
we divide into two cases; first we consider the case when T' = Z» with
(m,p) = 1 (§3) and then we consider the case m is divisible by p (84).
Even though the proof for the latter can be used for the former case, we
provide separate proofs because they give us better understanding for
the free cyclic codes in each case. We then show that these results can
be extended to arbitrary finite commutative rings (§5).
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In §6, we consider the dual of free cyclic codes. It turns out that no
free cyclic codes are self dual. However, we can construct many quasi-
cyclic codes whose duals are equivalent to itself.

Throughout this paper a ring means a commutative ring with the
identity element 1. Especially the coefficient ring will be a finite com-
mutative local rings unless otherwise stated.

2. Polynomials over finite rings

In this section we collect the results which we will use in the next
sections. We sometimes provide proofs which can be easily derived from
the results already known.

Let A be a finite local ring with the maximal ideal m and the residue
field A/m = k. Also write the canonical map p : A — k. When k is
a finite field Z, with p elements, we often write I, for the field Z,. A
polynomial f € A[X] is said to be basic irreducible if p(f) is irreducible
in k[X].

Now suppose A is a finite local ring with the maximal ideal m. We
know that the ideal m is nilpotent. See for example [6] or [1, Ch.8]. A
polynomial f € A[X] is called regular if the coeflicients of f generate
the unit ideal. A polynomial f € A[X] is a primary polynomial if the
ideal generated by f is a primary ideal of A[X].

We have a characterizing property for the primary polynomials.

ProposITION 1([6, XII1.12]). Suppose A is a finite local ring with
the maximal ideal m. A regular polynomial f € A[X] is primary poly-
nomial if and only if f is of the form f = 6II" + 3, where II is basic
irreducible, f € m[X] and § a unit.

We have an unique factorization theorem for polynomials over a finite
local rings similar to the unique factorization of polynomials over a field.

PropPOSITION 2([6, XIII.11]). Let R be a finite local ring. Let f &
R[X] be a regular polynomial. Then f can be written as a product
f=uf1f2--- fi where f; are primary regular coprime polynomials. This
expression is unique in the sense that if f =wvg19s---¢; then k =1 and
(fi) = (g:) after renumbering if necessary.

If 11(f) is a separable polynomial in F,[X] (i.e., u(f) has no multiple
root), then we can use Hensel’s lemma to obtain a stronger result.

COROLLARY [4]. Let R be a finite local ring and let f € R[X]. If u(f)
has distinct roots, then f can be written as a product f = ufifo - f
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where f; are basic irreducible coprime polynomials. This expression is
unique in the sense that if f = vg1g2--- g, then k =1 and f; = v;g; for
some unit v; after renumbering if necessary. In particular, X™ — 1 €
Z,:|X] can be written as a product of distinct monic basic irreducible
polynomials when (m,p) = 1.

When R is finite local and f is a primary polynomial over R, it is
easy to show that the quotient ring R[X]/(f) is again local.

LEMMA 1. Let R be a finite local ring with the principal maximal
ideal m = (). If f = 611" + B € R[X] is a primary polynomial with
{3 € m[{X] anc' I a basic irreducible, then R[X]/(f) is a local ring.

Proof. Since 7 is nilpotent, we see m €rad(f). Hence II erad(f) also.
Hence rad(f) O (m,II). But (=, II) is a maximal ideal. Hence we have
that rad(f) = (m,II) is a maximal ideal which we denote by 9. Hence
9 is a maximal ideal of R[X]/(f). Suppose M is another maximal ideal
containing (f). Then 9 D rad(f) = M. Hence M = N. O

Let R be a finite ring. A polynomial f € R[X] is said to be local
if R[X]/(f) is a local extension of R. Therefore a primary polynomial
over a finite local ring is a local polynomial by Lemma 1.

Let R,S be commutative rings with R C S. Let S¢ = S ®g S.
Then S becomes an S®-module under (a; ® as)a = ajaaz. We say S
is R-separable (or S is a separable extension of R) if S is a projective
S¢-module. A regular polynomial f € R[X] is said to be separable if
R[X]/(f) is a local separable extension of R.

We have the equivalent conditions to separability of local extensions.

THEOREM 1([6, XIV 3,6,8]). Let R,S be a finite local rings with
R C S and with the maximal ideals m and 9 of R and S respectively.
Then the following conditions are equivalent.

(i) S is a separable extension of R.

(ii) S/mS is a separable extension of R/mR.

(iii) S is an unramified extension of R, i.e., mS = 9.

(iv) S = R[X]/(f) for some monic basic irreducible polynomial f €
R[X].

A successive extension of separable extensions is separable.

COROLLARY. Besides the equivalent conditions of Theorem 1, further

assume S’ is a separable extension of §. Then S’ is a separable extension
of R.
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Proof. If M’ is the maximal ideal of S’ then M’ = MY’ = mSS’ =
mS’. O

Note that a finite ring is necessarily Artinian. Hence a finite local ring
has nilpotent maximal ideal [1, Proposition 8.6]. See [1] for the details.
We have conditions for an Artinian local ring to have a principal maximal
ideal.

PROPOSITION 3. [1, p.91] Let R be an Artinian local ring with the
maximal ideal m and the residue field k = R/m. Then the following
conditions are equivalent:

(i) every ideal of R is principal which is a power of m.

(i) the maximal ideal m is principal.

(iii) dimg(m/m?) < 1.

A separable extension of a local ring having a principal maximal ideal
also have a principal maximal ideal.

COROLLARY 1. Let S be a local extension of a finite local ring R.
Let 9 and m be the maximal ideals of S and R respectively. Suppose
m is principal and S is a separable extension of R. Then every ideal of
S is principal which is a power of 9 that is also principal.

Proof. Let (r) = m. By Theorem 1, 9t = mS = (r)S which is the
principal ideal (r) of S. Hence by Proposition 3, every ideal of S is a
power of 90t which is also principal. O

Combining these results and specializing to T' = Z,m, we have:

COROLLARY 2. Let T be a finite local ring with the maximal ideal m
which is principal say m = (7). Let f(X) € T[X] be a basic irreducible
polynomial. Then every ideal of T[X]/(f) is principal, say a power of
(m). In particular, every ideal of Zy~[X]/(f) is principal, say a power of

(p)-

Proof. Write R = T[X]/(f). Since f is basic irreducible, we see R
is a separable extension of T. We know that R is a local ring with
the maximal ideal say 9. By Corollary 1, 91 is also principal namely
M = () = 7R for some 7. Now by Proposition 3, every ideal of R is a
power of the maximal ideal (7) C R. O

Glueing these together by using Chinese Remainder Theorem, we
obtain:
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COROLLARY 3. Let T be a finite local ring with the maximal ideal
m which is principal, say m = (p). Let f € T[X] be a polynomial which
can be written as a product of monic basic irreducible polynomials.
Then every ideal of T[X]/(f) is principal. In particular, every ideal of
Z,x[X]/(X™ — 1) is principal if (m,p) = 1.

An explicit formula for the generator g of I in terms of f;’s is given
in [4] when f(X)=X"-1.

3. Free cyclic codes of length m over Z,» with (m,p) =1

In this section, we denote the ring Z,= by T. We first consider the
case when (m,p) = 1 in which case the polynomial X™ — 1 is a product
of basic irreducible polynomials by Corollary to Proposition 2. Then
we first show that R = T[X]/(X™ — 1) is a direct sum of separable
extensions of T". From this, we show that a cyclic code is free if and only
if C is generated by a polynomials which divide X™ — 1.

We need a criterion of freeness for a module over a local ring with
a nilpotent maximal ideal. The following is an adaption of [3, II1.3.2
Proposition 5] for our purpose.

PROPOSITION 4. [3] Let A be a local ring with the maximal ideal m
which is nilpotent. Let M be an A-module. Then M is free if and only
if the natural map m ® 4 M — M is injective.

COROLLARY. Let A be a local ring with the maximal ideal m which
is nilpotent. Then My & M, is free if and only if My and M, are free.

Proof. Simply note that m @ (M; & Ms) — My & My is injective if
and only if m ® M; — M;(i = 1,2) are injective. O

If A= Z,x, then this can be also deduced from the theorem of classi-
fication of finite abelian groups. Also, note that this is false if A is not
local as an easy example shows: Let A = Z/6 which is not local. Then
A2Z/2®7Z/3 is free but none of Z/2 or Z/3 is A-free.

For this we look at the modules over a separable extensions of T'. Let
R be a subring of S and let N be an S-module. Then N can be viewed
as an R-module as well. In general it is not true that a free S-module N
is R-free when we view N as an R-module. However if S is a separable
extension, then we have aflirmative answer.
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LEMMA 2([6, XIV.4]). Let S be a local ring containing R. Suppose
S is a separable extension of R and N is an S-module which is R-free.
Then N is S-free. In particular, if S is R-free, then N is S-free if and
only if N is R-free.

Let T = Zy« and let R = T[X]/(X™ — 1) with (m,p) = 1. Then we
can write (X™ — 1) as a product of monic basic irreducible polynomials,
say (X™ — 1) = fyfa--- ft by Corollary to Proposition 2. Then, by
Theorem 1, S; = T'[X]/(f;) is a separable extension of T" for each j.

We first need a simple fact.

LEMMA 3. Let T = Z,+ and let S = T|X]/(f) with f a basic ir-
reducible. Then an ideal I of S is T-free only if I is the unit ideal of
S.

Proof. A nonzero ideal I is T-free if and only if I is S-free. But the
number of elements of any proper ideal of S contains less elements than
the number of elements of S. Hence I cannot be S-free. Accordingly [
cannot be T-free either. O

Now we have a necessary and sufficient condition for C to be T-free
for the case when (m,p) = 1.

THEOREM 2. Let C be a cyclic code of length m with (m,p) = 1.
Then C is T-free if and only if there is a polynomial g such that g|(X™
—1) which generate C. In this case, we have rankr(C) = m — deg(g).

t
Proof. Write R = €@ S; with S; = T[X]/(f;) where fi1, fa,..., f; are
j=1

relatively coprime monic basic irreducibles. Now C being an ideal of
R =5, we have C = @(C N S;) where C N S; is an ideal of S;. By
Corollary to Proposition 4, C' is T-free if and only if C'N S; is T-free for
all j. This is equivalent to that C'N S; is Sj-free. Since C'N S; is an
ideal of S;, it can be S;-free only if CNS; = S; by Lemma 4. Therefore
for C to be T-free, it is necessary and sufficient that C' N S; is either 0
or S;. That is, C = §;, @ --- & S;, where S;; is one of the factors of

¢
R = @S;. By Corollary 3 to Proposition 3 or by [4], C is a principal
j=1
ideal, say (g) for some monic polynomial g dividing X™ — 1 as desired.
As for the rank, simply note that ranky(R/C)=rankrT[X]/(g) =

deg(g). O
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COROLLARY. Let (m,p) = 1. Then a cyclic code C is free if and only
if CNS; is either 0 or S; for all 5.

Proof. We -roved this in the course of the proof of Theorem 2. [

4. Free cyclic codes of length n over Z,. with (n,p) #1

Let T = Z,: and let m = (p) be the maximal ideal of . Now consider
the case when m is not necessarily relatively prime to p. Let X™ —
1 = f1--- fi be a factorization into monic (regular) primary coprime
polynomials. Let S; = T[X]/(f;). Then S; is a local extension of T' by
Lemma 1, but no longer a separable extension of T. We need to look at
the ideals of S = T'[X]/(f) where f is a primary factor of X™ — 1. Let
f = TI¢ + 3 be one of f; with a basic irreducible IT and 8 € m[X] and
let MM be the maximal ideal of S = T[X]/(f). (See Lemma 1.) Then
pS C M and M = (p, ) = rad((f)).

By Proposition 3, not every ideal of S is a power of 9t nor principal.
However we have the same result as Lemma 4 where we needed the
separability. First we will use a simple fact:

LEMMA 4. If f,g are regular polynomials in T[X], then so is fg. In
particular, a product of two regular polynomials is nonzero.

Proof. We know f is regular if and only if u(f) is regular [6, Theorem
XI1.2]. But p(fg) = u(f)u(g) # 0 in Fy[X]. O

Now we need a criterion for an element in a tensor product of two
modules to be zero.

LEMMA 5 ([3, 1.2.11]). Let A be a commutative ring and E, F be
A-modules. Let {ey,...,e,} be a set of generators of E. An element

z2=>.€®f; in EQAF is zero if and only if there is a set {a;;|1 < i,j <

i=1
n 7
n} in A and {x1,...,z,} In F such that Y a;je; =0 and f; = > a;;2;
j=1 i=1
for all i,j.
We will apply this to a module E with a single generator:

COROLLARY. Let e € E be a generator and f € F. Thene® f =0
if and only if there are a € A and z € F satisfying ae = 0 and ax = f.

Now we can prove a key fact:
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PROPOSITION 5. Let T = Z,«. Let S = T[X]/(f) where f =II°+p'g
with g regular and II a monic basic irreducible in T[X|. Let I be a proper
ideal (nonzero and nonunit ideal) of S. Then I is not T-free.

Proof. Let m = (p) C T be the maximal ideal. Since I C 9 = (II, p)
we see every element of [ is of the form all + bp.

First, suppose pla whenever all + pb € I. Then I C (p). In this
case choose the smallest r for which p” divide all elements of I. Let
0+#p'z el withz ¢ (p) and let p"*%z = 0. Then a < k since r > 0.
Now we see p* ® p"z = p ® p*~(p"z) is nonzero element of m @ I
by Corollary to Lemma 6. (Apply Corollary to Lemma 6 with e = p,
a=p"land f = p*1(p"z). We have then that f is not a multiple of
p"~! since a < k.) Now p® ® p"z is mapped to p"t%z = 0 in I under the
map m@r I — 1.

Now suppose there is all + pb € I for which p 1 a, i.e., a is regular.
Then we have

(aIl + pb)® = a°I1° + p(a polynomial)
= —a(p'g) + p(a polynomial).

Since a, g are regular, a®g is also regular by Lemma 5. In particular,
(all 4+ pb)¢ is nonzero and divisible by p. Choose the smallest r for
which p”|(all 4+ pb)e. Write (all 4+ pb)¢ = p"z and let p"t%z = 0. Then,
as before, p® ® p"z = p ® p"T%7 1z is a nonzero element of m ®1 I by
Corollary to Lemma 6 which is mapped to p" 7%z = 0 in I as before.
Therefore in either case the natural map m ® I — I is not injective.
Hence [ is not T-free by Proposition 4. 0

REMARK. Since the basic irreducible polynomials are primary, Lem-
ma 4 is a consequence of Proposition 5. However two different proofs
gives us better understanding for free cyclic codes.

Now we can characterize the free cyclic codes over Z, of length n for
the case (n,p) # 1. As expected, the conclusion is the same as the case
when (n,p) = 1.

THEOREM 3. Let T = Z,.. Let C be a cyclic code of length m
over T. Then C is T-free if and only if there is a polynomial g such
that g|(X™ — 1) which generate C. In this case, we have ranky(C) =
m — deg(g).
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Proof. The proof is the same as the proof of Theorem 2 except we
need to use Proposition 5 instead of Lemma 4. g

Using the same notations as the previous section, we have the follow-
ing.

COROLLARY. Let C be a cyclic code of length m over Z, for any n
and p. Then C' is free if and only if C N S; is either 0 or S; for all j.

Proof. It follows from the fact that no proper ideal of S; is free. [

5. Cyclic codes of length n over finite local rings

The result we obtained so far can be extended to finite local rings
with the principal maximal ideals.

PROPOSITION 6. Let T be a finite local ring with the maximal ideal
m. Suppose m is principal, say m = (w). Let S = T[X]/(f) where
f = II° + w*g with g regular and II a monic basic irreducible. If I is a
proper ideal, then I is not T-free.

Proof. The proof of Proposition 5 goes through if we replace p by =.
Note that 7™ = 0 for some n. il

THEOREM 4. Let T be a finite local ring whose maximal ideal is
principal. Let C be a cyclic code of length m. Then C is T-free if and
only if there is a polynomial g where g|(X™ — 1) which generate C. In
this case, we have ranky(C) = m — deg(g).

Proof. We use Proposition 6 and the rest of the proof is the same as
the proof of Theorem 3. O

COROLLARY. Let C be a cyclic code of length m over a finite local
ring T'. Then C' is free if and only if C N S; is either 0 or S; for all j.

6. Duality of free cyclic codes

So far we obtained a necessary and sufficient condition for a cyclic
code over Z,x to be free. With this characterization of free cyclic codes
it is easy to find its dual by using the results of [4]. It turns out that
no free cyclic code over Z,» is self dual. In this section we restrict our
attention to T' = Z,x for simplicity.
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As usual for a polynomial f of degree n, we define the reciprocal
polynomial f* by f*(X) = X" f(X~!). Then we have f** = f, (fg)* =
f*g* and (f +g)* = f* + ¢*. For a divisor g(X) of X™ — 1, we define
g to be the polynomial §(X) = XRH—);—)I.

First we consider the case of a cyclic code of length m over Z,« where
(m,p) = 1. In this case, the dual code C* can be described explictly in

terms of generators [4, Theorem 4.2].

THEOREM 5 [4]. Let (n,p) =1 and
C = (Fl,ppz, e ’pn—lﬁn),
where FoFy --- F, = X™ — 1. Then

Ct = (F§,pEr, p*Fr_,,.

T 39

For our purpose we need just one factor without p-part.

COROLLARY 1. Let (m,p) =1 and let C be the cyclic code C = (g)
generated by the polynomial g with g|{(X™ — 1). Then the dual code
C+ is given by C+ = (§*). In particular, a free cyclic code C = (g) is
self dual if and only if g is an associate of §*.

COROLLARY 2. Let (m,p) = 1. Let C be a free cyclic code generated

by the polynomials ¢1,... ,g with g;|(X™ — 1), ie., C = @(gz) Then

l
we have C+ = @ (§).
i=1
Even if p|n, when a cyclic code C is generated by a factor without
p-part, the corollary above still holds.

PROPOSITION 7. Let C = (g) be the free cyclic code generated by the
polynomial g with g|(X™ —1). Then the dual code C* is given by C+ =
(¢*). Further if C is a free cyclic code generated by the polynomials

!
91,9, where g;|(X™ — 1), i.e,, C = @(gz) then C+ = GB(A*) In
=1
particular, a free cyclic code C = (g) is self dual if and only if ( ) =(g").

Proof. The same proof of [4, Theorem 4.2] works in our case. O

Let X™ —1 = fifa--- fs be a factorization into primary coprime
polynomials. Then (X" — 1) = —(X™ — 1) = fffy---f*. By the
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uniqueness of factorization (Proposition 2), we let g1,...,g: to be those
fi’s for which (g;) = (¢;) and we let h1,...,h.,h],...,h. to be those
fi’s for which (A7) = (h}). Therefore we can write

(*) X" —1=g1---gh1---hehy---hl.
When C is a cyclic code C = (g) with g[(X™ — 1), then we get an
easy criterion for C' to be self dual.

COROLLARY 1. Let C = (g) be a T-free cyclic code of length n with
gl(X™—1). Let X™ — 1 have factorization as in (¥) above. Then C is
self dual if and only ift =0 and g = hy -« - h,.

Proof. Let g = g1---gah1--- hph! --- h. after renumbering if neces-
sary. Then §* = goy1---gsthyyy -+~ h.hey1 - hy. By Proposition 7, we
need to find a necessary and sufficient condition for (g) = (g*). Note
that these factors are distinct. Now it is clear that (¢g) = (¢*) if and

only ift=0,b=7r and c=0. d
COROLLARY 2. There is no self-dual free cyclic code of length n over
Y/
Proof. We simply note that f(X) = X —1 is a divisor of X™ —1 such
that f* is an associate of f. O

On the other hand, we have an abundance of ‘quasi’ self-dual quasi-
cyclic codes. Let T be a commutative ring. A cyclic code of length
n = [m over T can be viewed as a linear code over R = T[X]/(X™ — 1)
as in the case of a finite field [5].

Let C be a cyclic code over T of length n = Im and index I. Let

€ = (C00,C015+++1C01—17C103- -+ Cli=1y+ 3 Cm—1,05- - -y Cm—1,1—1)
be a coded word in C. We define a map
¢:T" — R
by
¢(c) = (co(X), c1(X), ... ci-1(X))

where

m—1
Cj(X) = Zcini € R.
1==0

Then ¢ transforms a cyclic code to a linear code of R'. Further the
correspondence set up a bijection between the cyclic codes of length n
with index [ and the linear codes of R' as for the case over a finite field
[5):
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LEMMA 6. The map ¢ defines a one-to-one correspondence between
cyclic codes over T of index | and length n = lm and linear codes of
length [ over R.

Let A be the subgroup of all n xn invertible matrices GL(n, Z,x ) over
Z generated by transpositions of coordinates and by multiplication of
i-th position by elements of Z;k, the group of units of Z,x. As for the

codes over a finite field, we define two codes C and C’ are equivalent if
there is o € A such that C’ = o(C).

THEOREM 6. Let T = Z,. Let C be a free quasi-cyclic code gener-
!
ated by the polynomials g1,... ,g where g;|(X™ — 1) i.e., C = @ (¢:).
i=1

Then C* is equivalent to C if and only if | is even and (g;) = (97)
(equivalently (g;) = (g)) for distinct indices i and j.

! !
Proof. By Proposition 7, we have (@ (g;))* = @ (g}). Hence @ (§})
=1

i=1 i=1
!
is equivalent to € (g;) if and only if (g;) = (g;) for distinct indices ¢
i=1
and j and accordingly [ must be even. O

EXAMPLE. A ‘quasi’ self-dual free cyclic code over Zg.

Let R = Zo[X]/(X® — 1) and consider the free cyclic code of R?
generated by g1 = fofife and g2 = f3f4 in the notations of Example

1. Then 1 = g2 = f3fs and g5 = (—f4)(—f3). Hence g1 and g3 are
associates. Hence the cyclic codes generated by g1 and go are ‘quasi’ self
dual cyclic codes of length 16 and index 2 by Theorem 6.
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