• Title/Summary/Keyword: free inner volume

Search Result 20, Processing Time 0.024 seconds

A Study on the Tracking of Count-Based Volumetric Changes in Nuclear Medicine Imaging (핵의학 영상에서 계수기반 체적변화 추적에 관한 고찰)

  • Ji-Hyeon Kim;Jooyoung Lee;Hoon-Hee Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2024
  • Purpose: Quantitative analysis through count measurement in nuclear medicine planar images is limited by analysis techniques that are useful for obtaining various clinical information or by organ overlap or artifacts in actual clinical practice. On the other hand, the use of SPECT tomography images is quantitative analysis using volume rather than planar, which is not only free from problems such as projection overlap, but also has excellent quantitative accuracy. In the use of developing SPECT quantitative analysis technology, this study aims to compare the accuracy of quantitative analysis between ROI of the conventional planar images and VOI of the SPECT tomographic images in evaluating the count change happened by the volume change of the source. Materials and Methods: A 99mTcO4- source(200.17 MBq) was filled with sterilized water in the syringe to create a phantom with an inner diameter volume of 60 cc, and a planar image and a SPECT image were obtained by reducing the volume by 15 cc (25%) respectively. ROI and VOI(threshold: 1~45%, 5% interval) were set for each image obtained to estimate true count and measure the total count, and compared with the preseted volumetric change rate(%). Results: When volume changes of 25%, 50%, and 75% occurred in the initial volume of 60 cc(100%) of the phantom, the average count changes of the measured planar image were 26.8%, 53.2%, 77.5%, and the average count changes of the SPECT image were 24.4%, 50.9%, and 76.8%. In this case, the VOI size(cm3) set showed an average change rate of 25.4%, 51.1%, and 76.6%. The highest threshold value for the accuracy of radioactive concentration by VOI size (average error -1.03%) was 35%, and the VOI size of the same threshold had an error of -17.1% on average compared to the actual volume. Conclusion: On average, the count-based volumetric change rate in nuclear medicine images was able to track changes more accurately using VOI than ROI, but there was no significant difference with relatively similar value. However, the accuracy of radioactive concentration according to individual VOI sizes did not match, but it is considered that a relatively accurate quantitative analysis can be expected when the size of VOI is set smaller than the actual volume.

Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions - (사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

In Vitro Aggregation and Culture of Mouse Embryos (생쥐 배의 시험관내 응집과 배양)

  • 이상진;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 1984
  • These experiments were carried out to obtain basic information necessary for in vitro culture of aggregated mouse embryos. Inbred ICR mice were used to obtain embryos. The zona pellucida was removed by placing the embryos in Whittingham's medium containing 0.5% protease for about 5-10minutes at 37$^{\circ}C$. Total 263 pairs of 2-, 4- and 8-cell zona free mouse embryos were subjected to aggregation by physical pressure and cultured in Whittingham's medium under the gas phase of 5% CO2 in air at 37$^{\circ}C$ for 24 to 60 hours. The results obtained in these experiments were summarized as follows: 1. Time needed for fusion of 2-, 4- and 8-cell embryos were 0-3, 0-3 and 0-3 hours, respectively and average time needed for in vitro development of 2-, 4- and 8-cell embryos after aggregation to morula and blastocyst were 42, 30 and 13.5 hours, and 51, 39 and 27 hours, respectively. 2. Of total 263 pairs of naked embryos, 227 were firmly aggregated together and the rats of aggregation in 2-, 4- and 8-cell embryos were 71.8, 88.3 and 97.0%, respectively. 3. The rates of aggregated pairs which obtained from 2-, 4- and 8-cell embryos developed to morula were 96.7, 95.6 and 96.9%, respectively, and embryos developed to blastocysts were 88.5, 89.7 and 90.8%, respectively. 4. Conspicuous differences in size of volume and inner cell masses between single and double blastocysts were observed. Although a single blastocolic cavity was formed in most double blastocysts, several formed two distinct cavities from the very beginning.

  • PDF

Characteristic of whole cell benzoylformate decarboxylase from Pseudomonas putida (Pseudomonas putida에서 생산된 전세포 benzoylformate decarboxylase의 활성특성 및 고정화 캡슐 제조)

  • 정재용;하태욱;홍진혁;오창엽;박중곤
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.264-272
    • /
    • 1999
  • Benzoylformate was converted to benzaldehyde by whole cell enzyme from Pseudomonas putida KCTC 1751. We investigated the effect of the composition of the growth medium on th accumulation of benzoylformate decarboxylase in the microbial cell. We prepared a calcium alginate capsule containing Pseudomonas putida cells to develop a reusable whole cell enzyme. Pseudomonas putida cells were inoculated in the capsule and cultured in M1 medium for 1 day followed by cultivation in M3 medium for 3 days. The dry cell density reached 77.75 g/L on the basis of the inner volume of the capsule. The specific activity of encapsulated whole cell benzoylformate decarboxylase was half as high as that of free whole cell enzyme. The activity of encapsulated whole cell benzoylformate decarboxylase was half as high as that of free whole cell enzyme. The activity of encapsulated whole cell benzoylformate decarboxylase decreased 20 % after use for 20 batches and 40% after use for 30 batches. The dry cell density reduced about 10 % after 30 trials.

  • PDF

Analysis of Speed-Density Correlation on a Merge Influence Section in Uninterrupted Facility (연속류도로 합류영향구간 속도-밀도 상관관계 분석)

  • Kim, Hyun Sang;Doh, Techeol Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.443-450
    • /
    • 2009
  • Uninterrupted facility - since there is a close relationship between traffic volume, speed and density -, when a ramp traffic flow merges into the main line, will change the traffic speed or density, and the corresponding correlational model equation will be changed. Thus, this study, using time and space-series traffic data on areas under the influence of such a merging, identified sections which changed the correlation between speed and density variables, and examined such changes. As a result, the upstream and merging sections showed the "Underwood"-shaped exponent, and the downstream after passing the merging section showed a straight line "Greenshields" model. The downstream section which changed the correlation between speed and density showed a gradual downstream movement phenomenon within 100 m-500 m from the end of the third lane linking with the ramp, as the traffic approached the inner lanes. Also, the upstream section, merging section, and downstream section involving a change showed heterogeneous traffic flows which, in the speed-density model, have a statistically different free flow speed (constant) and a different ratio of free flow speed to jam density (gradient).

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

A sutdy on the District Unit Design for CO2 Reduction of Transportation (교통부문 CO2 저감을 위한 지구단위설계 방법에 관한 연구)

  • Jin, Jang-Won;Park, Min-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1370-1376
    • /
    • 2012
  • This study tried to analyze $CO_2$ emission volume as green-house gases by application of land use patterns and transport policies in District Unit Design. It is postulated a Toy network and various scenarios which are combined land use patterns and transport policies for analyzing $CO_2$ gas reduction. As results, this study shows best District Unit Design technique is the policy that develop mid block and introduction of car free zone to inner 2 way streets. Worst design technique is the policy that make hierarchical network and introduction of access control to outer roads that have been known as a best road policy till nowadays. Therefore, we need more carefully introduce design technique for reduction of $CO_2$ in District Unit.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

The Rationalization of PDM in Pusan Port for the Period of Round Pacific Area (환태평양 시대의 부산항 물류산업 합리화)

  • Park, S. Y.;Park, C. S.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.93-110
    • /
    • 1992
  • The most change in this century is supposed to be declination of ideology, and block of world economy. Addition to down full of cold war atmosphere around Northeast Asia, not only economic and social mood in this region is dramatically changed, but also it gave birth to the block of Northeast economy that accerlated new hub of world economy. According to dramatic change of economic surroundings the dynamic potential of growth in this region will be guided to enlarge inter-regional trade and increase volume of trade, thus suggests to grow steadily transportation. cargos in this region will have to arrange the system of delivery and inner transportation, accessary facilities, inter-regional harbors if North America and EC has connected easily. As have accerlated GATT and UR represented multilateralism and regionalism, it has regulated to increase trades of region due to relief of the trade barrier through specific areas has agreed with separately. The flow of regionalism of world economy has appeared to realize EC and NAFTA centered U.S.A, and also has presented to free trade region or one-size market agreement in Asia as APEC, EAEG in Malaysia, and etc. In defense to this block and internationalism of world economy, Pusan has to come forward to the hub of Northeast others has proposed a project to dominate the Northeast, Economy Association Agreement as Far East comprehensive development project in USSR, Hunchun development project in NK, and East Sea development project in PRC, Niigate regional development in Japan, Duman River development project in NK, and East Sea development project in Korea. As this exercise has proceed, Pusan also have arranged development strategy definitely and prepared provisions systematically. Engaging to participate center of delivery system is meant to be completed complex functions, namely the transfer storage processing & assembly function of international commodity. Pusan has ability to be terminal point of TSR. it had been connected to EC as the biggest economy block and TKR as complex transportation root to Far East, it would be the center of inground and seabase delivery terminal to Rotterdom as the biggest container pier and major piers to North-East and South East Asia. In order to provide a Role of 21 century's internationalization, Pusan has appealed to participate in management information research and development connected to Pohang-Ulsan-Changwon-Masan, and has utilized efficiently the resources such as man, material, money and information.

  • PDF