• Title/Summary/Keyword: free boundary problems

Search Result 172, Processing Time 0.023 seconds

A Study on the Avoidance of Tool Interference in Analytic Compound Surface Machining (해석적 복합 곡면 가공에 있어서의 공구 간섭 방지에 관한 연구)

  • Kang, S.G.;Cho, S.W.;Ko, S.L.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.156-164
    • /
    • 1996
  • Tool interference is one of the most critical problems in machining die cavities and punches. When machining concave or convex regions of cavities with large radius tool in rough cutting, the tool easily overcuts or undercuts the portions of the surface, which result in machining inaccuracy. So the generation of interference-free tool path must be required for more efficient rough cutting. In this paper, we present a method for modeling die cavities which consist of simple surface or analytic compoyund surfaces and present an algorithm for checking and removing the tool interference occurred in machining the die cavities. Using these algorithms, we can represent a die cavity, and check the interfer- ence regions, and then remove these interferences. Especially we focus on the side interference in the sides of analytic elements and base surface boundary.

  • PDF

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.

Local stereo matching using combined matching cost and adaptive cost aggregation

  • Zhu, Shiping;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.224-241
    • /
    • 2015
  • Multiview plus depth (MVD) videos are widely used in free-viewpoint TV systems. The best-known technique to determine depth information is based on stereo vision. In this paper, we propose a novel local stereo matching algorithm which is radiometric invariant. The key idea is to use a combined matching cost of intensity and gradient based similarity measure. In addition, we realize an adaptive cost aggregation scheme by constructing an adaptive support window for each pixel, which can solve the boundary and low texture problems. In the disparity refinement process, we propose a four-step post-processing technique to handle outliers and occlusions. Moreover, we conduct stereo reconstruction tests to verify the performance of the algorithm more intuitively. Experimental results show that the proposed method is effective and robust against local radiometric distortion. It has an average error of 5.93% on the Middlebury benchmark and is compatible to the state-of-art local methods.

A study on Dynamic Characteristics of Hydraulic Motor Brake System Integrated Counter Balance Valve (유압 모터 브레이크 시스템의 동특성에 관한연구)

  • Yun, So-Nam;Kim, Hyeong-Ui
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.27-32
    • /
    • 1990
  • A counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. In this study, for the purpose of easy estimation about dynamic chrcteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. dynamic caracteristics were analysed by numerical intergration using Runge-Kutta method, because the equations in this circuit with counter balance valve contain various nonlinear terms. So the analyzing method developed in this study enabled very easy estimating the relation between the performance of counter balance valve and various physical parameters related to the valve.

  • PDF

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

A Study on TM Scattering by a Conductive Strip Grating Between a Double Dielectric Layer (2중 유전체층 사이의 완전도체띠 격자구조에 의한 TM 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • In this paper, TM(transverse magnetic) scattering problems by a conductive strip grating between a double dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the conductive boundary condition is applied to analysis of the conductive strip. The most normalized reflected powers of the sharp variations in minimum values are scattered in direction of the other angles except incident angle. Generally, in the case of numerical analysis except for reflection and transmission power in free space, as the dielectric constants of the double dielectric layer increases, the reflected power increases and the transmitted power decreases relatively, respectively. The numerical results for the presented structure of this paper having a grounded double dielectric layer are shown in good agreement compared to those of the existing papers.