• 제목/요약/키워드: free bending line

검색결과 13건 처리시간 0.029초

Inelastic buckling and post-buckling behavior of gusset plate connections

  • Hadianfard, Mohammad Ali;Khakzad, Ali Reza
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.411-427
    • /
    • 2016
  • In this study, by using finite element non-linear static analysis and comparing it with experimental models, the buckling and post-buckling behavior of bracing gusset plates has been investigated. The effects of such parameters as dimension and thickness of the gusset plate and the influence of position of the bracing member on the behavior of gusset plate have been examined. The results of the analyses clearly suggest that capacity, buckling and post-buckling behaviors of gusset plates depend on the position of the bracing splice plate with respect to the free bending line as well as on the size and thickness of the gusset plate. Also, with respect to numerical analysis results, some practical graphs for the calculation of buckling capacity of gusset plate connections are presented. For steel structures, the proposed method is apparently more accurate than available code procedures.

Optimisation of symmetric laminates with internal line supports for maximum buckling load

  • Walker, M.
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.633-641
    • /
    • 1998
  • Finite element solutions are presented for the optimal design of symmetrically laminated rectangular plates with various types of internal line supports. These plates are subject to a combination of simply supported, clamped and free boundary conditions. The design objective is the maximisation of the biaxial buckling load. This is achieved by determining the fibre orientations optimally with the effects of bending-twisting coupling taken into account. The finite element method coupled with an optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of internal line support type and boundary conditions on the optimal ply angles and the buckling load are numerically studied. The laminate behavior with respect to fibre orientation changes significantly in the presence of internal line supports as compared to that of a laminate where there is no internal supporting. This change in behavior has significant implications for design optimisation as the optimal values of design variables with or without internal supporting differ substantially.

Plate prebending using a three-dimensional-printed model affords effective anatomical reduction in clavicular shaft fractures

  • Hyungsuk Kim;Younsung Jung;Hyun Seok Song
    • Clinics in Shoulder and Elbow
    • /
    • 제26권4호
    • /
    • pp.397-405
    • /
    • 2023
  • Background: A precontoured plate rarely fits properly within the patient's clavicle and must be bent intraoperatively. This study aimed to determine whether anatomical reduction could be achieved using a plate bent before surgery. Methods: This study included 87 consecutive patients with displaced mid-shaft clavicle fractures who underwent plate fixation and were followed-up for a minimum of 1 year. After exclusions, 39 consecutive patients underwent fixation with a precontoured plate bent intraoperatively (intraoperative bending group), and 28 underwent fixation with the plate bent preoperatively (preoperative bending group). Using free software and a three-dimensional (3D) printer, ipsilateral clavicle 3D-printed models were constructed. Using plain radiographs, the distance between the edge of the lateral inferior cortex and the medial inferior cortex was measured. The angle between the line connecting the inferior cortex edge and the line passing through the flat portion of the superior cortex of the distal clavicle was measured. Results: Mean length differences between the ipsilateral and contralateral clavicle were smaller on both anteroposterior (AP; P=0.032) and axial images (P=0.029) in the preoperative bending group. The mean angular differences on both AP (P=0.045) and axial images (P=0.008) were smaller in the preoperative bending group. No significant differences were observed between the two groups in functional scores at the last follow-up. Conclusions: Smaller differences in length and angle between the ipsilateral and contralateral clavicle, indicative of reduction, were observed in the preoperative bending group. Using the precontoured technique with low expense, the operation was performed more effectively as reflected by a shorter operation time. Level of evidence: III.

VIBRATION OF A CIRCULAR PLATE WITH A CONCENTRATED MASS ATTACHED ON A RADIUS

  • Lee, Jang-Moo;Hong, Jin-Sun
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제1권1호
    • /
    • pp.89-96
    • /
    • 1995
  • An analytical method is presented for predicting the effect of a local deviation in the form of a concentrated mass along a radial line on the free bending vibration characteristics of a nearly axisymmetric circular plate. The approach is based on the Rayleigh-Ritz method and the expression of local deviation of the concentrated radial mass as the variation of heaviside unit step function. The effects of the concentrated mass on the natural frequencies and mode shapes of the plate are predicted with a proposed nondimensional mass parameter.

철도교량 F.C.M(Free Cantilever Method) 공법 시공사례 연구 (The Application Of F.C.M(Free Cantilever Method) Case Study Of The Railway Bridge)

  • 권순섭;김경연;최동기;정인철;신상철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.562-567
    • /
    • 2005
  • F.C.M applied from Jin Jung Li to Yang Su Li(660m) in Puk Han River Bridge(1,414m) construction part is a construction method on the double-track construction which is the third section part of work, called Chung Ang Railroad Line(Deok-So${\sim}$Won-Ju). This method is the beginning application on Railroad Bridge. After completing upper slab structure, there are several following works such as setting up ballast, sleepers and laying long rails. So it is important to consider the properties of Railroad Bridge while designing the length of bridge and its single span. After the physical process study the shrinkage and creep of concrete, bending up by prestressing in general PSM bridge, relaxation of tendons as time goes by after post-tension, the conclusion of such a study is applied to the Puk-Han River Bridge in this construction field.

  • PDF

On the structural behavior of ship's shell structures due to impact loading

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.103-118
    • /
    • 2018
  • When collision accident between ships or between ship and offshore platform occurs, a common phenomenon that occurs in structures is the plastic deformation accompanied by a large strain such as fracture. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is heated by line heating and steel plate formed by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model and the assumption that strain rate can be neglected when strain rate is less than the intermediate speed are verified through free drop test as well as comparing with numerical results in several references. This paper ends with describing the future study.

앵커식 자유지지 널말뚝벽의 설계용 간편식 (Simplified Formulae for Free Earth Supported Anchored Sheet-Pile Wall)

  • 김기웅;권민석;백영식
    • 한국지반환경공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.37-44
    • /
    • 2002
  • 널말뚝의 보다 편리한 설계를 위하여 지하수위가 굴착선 위에 있을 때 설계시 수계산을 하지 않고 근입깊이, 앵커장력, 그리고, 최대 휨모멘트를 구할 수 있는 설계용 도표가 개발되어 있다. 그러나 기존의 설계용 도표는 지하수위가 굴착선 위에 있을 경우와 앵커의 설치위치와 단위중량비가 제한적인 경우(Stock, 1992)에 한하여 개발되어 있어 설계에 많은 제약을 받는다. 다양한 설계조건에서도 설계에 편리하게 이용할 수 있는 간편식을 개발하였다. 널말뚝의 기하학적 조건과 흙의 토성치를 변화시켜 근입깊이, 앵커장력 그리고 최대 휨모멘트 등의 결과값을 얻어 이를 회귀분석을 통하여 사용하기 편리한 간편식을 개발하였다.

  • PDF

Inclined yield lines in flange outstands

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.623-642
    • /
    • 2008
  • While spatial plastic mechanism analysis has been widely and successfully applied to thinwalled steel structures to analyse the post-failure behaviour of sections and connections, there remains some contention in the literature as to the basic capacity of an inclined yield line. The simple inclined hinge commonly forms as part of the more complex spatial mechanism, which may involve a number of hinges perpendicular or inclined to the direction of thrust. In this paper some of the existing theories are compared with single inclined yield lines that form in flange outstands, by comparing the theories with plate tests of plates simply supported on three sides with the remaining (longitudinal) edge free. The existing mechanism theories do not account for different in-plane displacement gradients of the loaded edge, nor the slenderness of the plates, and produce conservative results. A modified theory is presented whereby uniform and non-uniform in-plane displacements of the loaded edge of the flange, and the slenderness of the flange, are accounted for. The modified theory is shown to compare well with the plate test data, and its application to flanges that are components of sections in compression and/or bending is presented.

점성토 지반에 설치되는 앵커로 지지된 널말뚝의 내진설계 (Seismic Design of Anchored Sheet Pile Walls in c-0 Soils)

  • 김홍택
    • 한국지반공학회지:지반
    • /
    • 제8권1호
    • /
    • pp.41-58
    • /
    • 1992
  • 본 연구에서는 항만공사에 이용되는 앵커로 지지된 널말뚝의 내진설계를 위한 해석방법의 제시가 이루어 졌다. 제시된 해석방법은 지진하중시의 동수압을 포함하였으며, 침투에 의한 영향을 고려할 경우에도 적용이 가능하다. 또한 적용범 위는 모래 및 점성토(c-0 soil)로 이루어진 지반의 경우이고, 자유지지법을 토대로 하였다. 아울러, 널말뚝 양쪽면의 수위차, 앵커의 위치, 벽마찰각, 준설저면의 경사각, 부착력, 점착력 등이 근입깊이, 앵커하중 및 최대모멘트에 미치는 영향을 제시된 해석방법을 토대로 분석하였다. 이외에도 서로 다른 안전율 정의에 관한 비교 및 내진설계시의 유의 사항에 대한 검토가 이루어 졌다.

  • PDF

Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow

  • Sun, Shuai;Li, Liang;Wang, Chao;Zhang, Hongyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.69-84
    • /
    • 2018
  • In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull-propeller-rudder system by Reynolds-Averaged Navier Stokes (RANS) method and volume of fluid (VOF) model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull-propeller-rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.