• 제목/요약/키워드: franz cells

검색결과 49건 처리시간 0.023초

세라마이드를 구성성분으로 하는 나노리포좀의 응용 - 화장품에서의 자극완화제 (The Application of Nanoliposome Composed of Ceramide as an Anti-irritant in Cosmetics)

  • 조병기;안기웅;신봉수;정지헌;박해룡;황용일
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.267-272
    • /
    • 2005
  • 본 연구는 화장품에서 사용되는 다양한 자극원에 대한 자극완화제로서의 세라마이드를 구성성분으로 하는 나노리포좀의 잠재적 가능성을 알아보고자 하였다. 세라마이드는 인체로부터 수분 손실을 막고, 외부의 물리적, 화학적, 그리고 미생물에 의한 손상으로부터 신체를 보호함으로써 인간의 생리작용에 있어 중요한 부분을 담당하는 것으로 알려진 표피 투과 장벽의 주요한 구조적 구성 성분이다. 본 연구 결과에 의하면 피부 장벽 기능 강화와 자극완화 효과가 제형 내에 단순히 분산된 세라마이드보다 세라마이드를 구성성분으로 하는 나노리포좀을 함유하는 경우 보다 우수하게 나타났다. 그리고, 자극원으로서 제형 내 함유되어 있는 젖산의 피부 투과도에 있어서 세라마이드를 구성성분으로 하는 나노리포좀의 영향을 평가하기 위해 무모 생쥐에서 얻어낸 피부 막으로 horizontal franz diffusion cells을 이용한 in vitro 피부 투과 시험을 수행해 보았다. 시험 결과, 세라마이드로 구성되 나노리포좀의 항자극 효과는 자극원의 피부 투과도를 감소시키는 것으로 확인하였다. 결론적으로, 본 연구에서는 새로운 자극완화 시스템의 개발이 가능하였고 이러한 세라마이드를 구성성분으로 하는 나노리포좀을 화장품에 적용 가능하였다.

InAs/GaAs 양자점 태양전지에서 AlGaAs Potential Barrier 두께에 따른 Photoreflectance 특성 및 내부 전기장 변화

  • 손창원;하재두;한임식;김종수;이상조;;김영호;김성준;이상준;노삼규;박동우;김진수;임재영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.306-307
    • /
    • 2011
  • Franz Keldysh Oscillation (FKO)은 p-n 접합 구조의 공핍층(depletion zone)에서 전기장(electric field)에 의해 발생되며, Photoreflectance (PR) spectroscopy를 통하여 관측된다. InAs/GaAs 양자점 태양전지(Quantum Dot Solar Cells, QDSCs)에서 PR 신호에 대한 Fast Fourier Transform (FFT)을 통하여 FKO 주파수들을 관측할 수 있고, 각각의 FKO 주파수들은 태양전지 구조에 대응하는 표면 및 내부전기장(internal electric field) 들로 분류할 수 있다. InAs/GaAs 양자점 태양전지에서 AlGaAs potential barrier의 두께에 따른 내부전기장의 변화를 조사하기 위해, GaAs-matrix에 8주기의 InAs 양자점 층이 삽입된 태양전지를 molecular beam epitaxy (MBE) 방법으로 성장하였다. 양자점의 크기는 2.0 monolayer (ML)이며, 각 양자점 층은 1.6 nm에서 6.0 nm의 AlGaAs potential barrier들로 분리되어 있다. 또한 양자점 층의 위치에 따라 내부전기장 변화를 조사하기 위해, p-i-n 구조에서 양자점 층이 공핍층 내에 위치한 경우와 p+-n-n+ 구조에서 양자점 층이 공핍 층으로부터 멀리 떨어진 n-base 영역에 삽입하여 실험결과를 비교분석하였다. PR 실험결과로부터, p-i-n 구조에서 InAs 양자점 태양전지의 내부전기장 변화는 potential barrier 두께에 따라 다소 복잡한 변화를 보였으며, 이는 양자점 층이 공핍층 내에 위치함으로써 격자 불일치(lattice mismatch)로 발생된 응력(strain)의 영향으로 설명할 수 있다. 이러한 결과들을 각각의 태양전지 구조에서 표면 및 내부전기장에 대해 계산된 값들에 근거하여, p+-n-n+ 구조에서 양자점 층이 공핍 층으로부터 멀리 떨어진 영역에 삽입된 경우의 결과와 비교해 보면 내부전기장의 변화는 더욱 분명해진다. 즉, 양자점 층의 potential barrier의 두께를 조절하거나, 양자점 층의 위치를 변화시킴으로써 양자점 태양전지의 내부전기장을 조작할 수 있으며, 이는 PR 실험을 통해 FKO를 관측함으로써 확인할 수 있다.

  • PDF

Evaluation of Dermal Absorption Rate of Pesticide Chlorpyrifos Using In Vitro Rat Dermal Tissue Model and Its Health Risk Assessment

  • Kim, Su-Heyun;Jang, Jae-Bum;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Sang-Hee
    • 대한의생명과학회지
    • /
    • 제22권4호
    • /
    • pp.140-149
    • /
    • 2016
  • All pesticides must be assessed strictly whether safe or not when agricultural operators are exposed to the pesticides in farmland. A pesticide is commonly regarded as safe when estimated dermal absorption amount is lower than the acceptable operator's exposure level (AOEL). In this study, dermal absorption rate of chlorpyrifos, a widely used organophosphate insecticide, was investigated using rat dermal tissue model. Chlorpyrifos wettable powder solved in water (250, 500 and 2,500 ppm) was applied to freshly excised rat dermal slices ($341{\sim}413{\mu}m$ thickness) on static Franz diffusion cells at $32^{\circ}C$ for 6 hours. After exposure period of 6 hours, and then washing-at residual amount of chlorpyrifos was analyzed in dermal tissues, tape strips, washing solution, washing swabs of receptor bottles and receptor fluids at 1, 2, 4, 8 and 24 hours. Chlorpyrifos was only detected in dermal tissue but not found in receptor fluid at each concentration and time point, and the absorption rate of 250, 500 and 2,500 ppm was 2.36%, 1.96% and 1.69%, respectively. The estimated exposure level of chlorpyrifos was calculated as 0.012 mg/kg bw/day. The health risk for farmers in this condition is a level of concern because the estimated exposure level is 12 times higher than AOEL 0.001 mg/kg bw/day. However, actual health risk will be alleviated than estimated because absorbed chlorpyrifos is not permeated into internal body system and only retained in skin layer.

HISTOPATHOLOGY AND PERCUTANEOUS ABSORPTION OF TOPICAL FORMULATION CONTAINING NEW CAPSAICIN ANALOG.

  • Kim, Chong-Hyuk;Lee, Beom-Jin;Cha, Bong-Jin;Kim, Soon-Hoe;Kim, Won-Bae
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.115-115
    • /
    • 1997
  • A new capsaicin analog modified with 4-hydroxyl and alkyl chain of capsaicin was a very potent antiinflammatory analgesic drug and may be clinically useful for those who have rheumatoid arthritis, diabetic neuropathy and cancer. The purpose of this study was to investigate histopathology after short and long term application of poloxamer-based gels, and percutaneous absorption of various topical formulations. Poloxamer-based gel was prepared by cold method using poloxamer 407. The poloxamer gels was applied to dorsal sites of hairless mouse skin during one week or one month for the evaluation of skin irritation. The applied site was then sectioned for histopathologic examination. The topical formulations were also prepared using CMC, HPMC, MC, carbopol and glycerylmono stearate. Skin variation of poloxamer gels was studied using excised hairless mouse, rat, hamster and human penis skin. Franz-type diffusion cells were used far skin penetration of drug against receptor phase filled with about 10$m\ell$ of 0.9% saline solution kept at 32$^{\circ}C$. The concentration of drug was determined by the reverse phased C18, Symmetry HPLC with fluorometeric detector. No skin erythema was observed after dorsal application of poloxamer-based gels for one week or one month. No histopathologic changes was also examined, suggesting no skin toxicity of poloxamer-based gels. The order of flux rate was HPMC > MC ( CMC > poloxamer >> glycerylmono stearate ( carbopol. There was a skin variation of poloxamer gels. The flux rate of poloxamer gels was highest in case of hairless mouse followed by rat, human and hamster skin. The Partial support-Ministry of Science and Engineering (HAN project).

  • PDF

국소 피부 투여를 위한 이트라코나졸 제제의 조성 (Formulations of Itraconazole for Topical Skin Delivery)

  • 이은아;허성근;최명준;정석재;심창구;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.167-171
    • /
    • 2007
  • Itraconazole is one of the most potent antifungal agents available in the market today. However, the low bioavailability due to its poor-water solubility calls for an alternative formulation to the current oral type. A topical itra-conazole-containing formulation may be of use for several reasons including the opportunity to reduce adverse events and generate high local tissue levels, more rapid drug delivery, and lower systemic exposure. The purpose of the present study was to investigate the vehicles for topical skin delivery of itraconazole. The effect of formulations on the hairless mouse skin permeation and deposition of itraconazole was determined using Franz diffusion cells at $37^{\circ}C$. Benzyl alcohol in micro-emulsion significantly increased the solubility of itraconazole, thereby increasing the skin permeation rate. However, lipo-some formulation showed the lowest solubility and permeation rate of itraconazole. Although the solubility of itraconazole in hydrogel formulation was lower than that in microemulsion, skin permeation rate was significantly higher probably due to its adhesive property. Therefore, microemulsion-based hydrogel formulation is expected to synergistically increase the skin permeation rate and skin deposition of itraconazole.

마이크로 피부침을 이용한 FITC-OVA의 경피흡수 (Transdermal Delivery of FITC-Ovalbumin with Microneedle System)

  • 장우영;이창래;서성미;이봉;김문석;강길선;이한구;이해방
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권6호
    • /
    • pp.403-409
    • /
    • 2005
  • For transdermal delivery of large molecular drugs such as vaccine and protein drugs, novel microneedle treatment device with roll was designed. The roll dimension is 1.43 cm diameter and 2.8 cm perimeter. Total number of microneedle on the roll is 3,360 with $230\;{\mu}m$ height and $740\;{\mu}m$ distance. The pore with $150\;{\mu}m$ depth and $35\;{\mu}m$ diameter on the skin was made by the designed microneedle device. This system could be achieved without pain. The permeation rates of FITC labelled ovalbumin (FITC-OVA, molecular weight: 45,000 g/mol) as a model protein were determined by modified Franz diffusion cells using skins of hairless mice or SD rats which were treated by using microneedle device two or four times. The average penetration fluxes of model protein increased from 674 to $872\;{\mu}g/cm^{2}{\cdot}hr$ as the number of treatment to make pore increased from two to four times. In conclusion, we confirmed the possibility of using the designed microneedle treatment device for transdermal delivery of the large molecular drugs.

기제와 피부투과촉진제가 아포모르핀의 피부투과에 미치는 영향 (Effects of Vehicles and Penetration Enhancers on the Percutaneous Absorption of Apomorphine)

  • 최영근;최옥;김건남;박은석;지상철
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권2호
    • /
    • pp.129-133
    • /
    • 2003
  • In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of apomorphine, the skin permeation rates of apomorphine from vehicles of different composition were determined using Franz diffusion cells fitted with excised rat skins. Solubility of apomorphine in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of apomorphine. The solvents used were propylene glycol (PG), $Transcutol^{\circledR},\;Labrasol^{\circledR},\;Labrafac hydro WL^{\circledR},\;Labrafil WL 2609 BS^{\circledR}$ and isopropyl alcohol. Even though permeation rates of apomorphine from each vehicle were low $(0.008-0.36\;{\mu}g/cm^2/hr)$, the combination of PG and $Labrafac^{\circledR}$ increased it significantly. The permeation rates of apomorphine from $PG/Labrafac^{\circledR}$ mixtures increased as the volume fraction of PG in the mixture increased. The maximum permeation rate of $18\;{\mu}g/cm^2/hr$ was achieved at 30% of PG, which decreased with further increase of PG fraction. A series of fatty acids, alcohols and monoterpenes were employed as penetration enhancers. Incorporation of each enhancer in the $PG/Labrafac^{\circledR}$ (30:70) mixture at the level of 10% improved the skin permeation significantly. The highest permeation rate, $117\;{\mu}g/cm^2/hr$, was attained with myristic acid.

코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성 (Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid)

  • 박은우;조성완;김동섭;최기환;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권3호
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Local tissue effects of various barrier membranes in a rat subcutaneous model

  • Naenni, Nadja;Lim, Hyun-Chang;Strauss, Franz-Josef;Jung, Ronald E.;Hammerle, Christoph H.F.;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • 제50권5호
    • /
    • pp.327-339
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. Methods: Seven different membranes-3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)-were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non-cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.

보골지 추출물의 피부 투과 촉진 시스템 개발 (Development of Bioavailability Enhancement System for the Skin Permeation Promotion of Psolarea corylifolia Extract)

  • 조영호;안계환;양승원;조관현;김상원;백명기;이계원
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.505-512
    • /
    • 2011
  • Psolarea corylifolia extract that contains bakuchiol is known to have anti-microbial, anti-inflammatory and anti-scarring effects. In this study, a vesicles such as liposome, niosome, and transfersome were produced to encapsulate P. corylifolia extract and measured their stability and physiochemical property. The skin permeation and partitioning of P. corylifolia extract in the vesicles were elucidated in nude mouse skin by using Franz diffusion cells after topical application for 24 h. After storage at 25, 40, $70^{\circ}C$, and light, the stability of bakuchiol incorporated into the vesicles was maintained for 30 days. The optimal concentration of P. corylifolia extract entrapped into the vesicles was found to be 5~10%. From the physicochemical studies, after storage at 4, 25, and $40^{\circ}C$, the viscosity and particle size of the vesicles remained in 30~80 cP and the nanosize range for 6 months, respectively. From the permeation experiments, niosome showed a higher amount of bakuchiol permeated through the mouse skin compared to liposome and transfersome after 24 h. From these results, niosome and transfersome could be a good bioavailability enhancement system (BAES) for P. corylifolia extract to improve the skin permeation and stability.