• 제목/요약/키워드: frame building

검색결과 1,091건 처리시간 0.022초

The Elevator, the Iron Skeleton Frame, and the Early Skyscrapers: Part 2

  • Larson, Gerald R.
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.17-41
    • /
    • 2020
  • In Part One, I documented the evolution of the use of the elevator and the iron frame to build ever-taller buildings that would eventually be called "skyscrapers," to offset the ever-increasing cost of Manhattan real estate. By the start of the Great Depression of the 1870s in 1873, New York architects had erected two ten-storied skyscrapers. In Part Two I document the major events, designers, and buildings in New York, Chicago, and other American cities that eventually culminated in the ability to erect 20 story skyscrapers by 1890.

Simplified finite element modelling of non uniform tall building structures comprising wall and frame assemblies including P-Δ effects

  • Belhadj, Abdesselem Hichem;Meftah, Sid Ahmed
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.253-273
    • /
    • 2015
  • The current investigation has been conducted to examine the effect of gravity loads on the seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The proposed model includes the P-${\Delta}$ effects induced by the building weight. Based on the variational approach, a 3D finite element with two nodes and six DOF per node including P-${\Delta}$ effects is formulated. Dynamic and static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame systems. The influences of P-${\Delta}$ effects and height of the building on tip displacements under Hachinohe earthquake record are investigated through many structural examples.

시뮬레이션과 실증실험을 통한 슈퍼윈도우의 성능분석 (Analysis Performance of Super Window through Simulation and Verification Experiment)

  • 백상훈;이진성;조수;장철용;성욱주;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1069-1074
    • /
    • 2006
  • Heat loss by window in building occupies about 1/4 of energy amount used building. Therefore, high thermal insulation of windows system can speak as very important part in save energy of building. in this research, After select most suitable frame design and Glazing system for high thermal insulation of windows, execute simulation of mixing frame and Glazing System. Also, manufacture windows with the result and execute verification experiment, with verified simulation, this research evaluated thermal insulation performance of window by Glazing System's change.

  • PDF

The effect of RBS connection on energy absorption in tall buildings with braced tube frame system

  • Shariati, Mahdi;Ghorbani, Mostafa;Naghipour, Morteza;Alinejad, Nasrollah;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.393-407
    • /
    • 2020
  • The braced tube frame system, a combination of perimeter frame and bracing frame, is one of the systems used in tall buildings. Due to the implementation of this system in tall buildings and the high rigidity resulting from the use of general bracing, providing proper ductility while maintaining the strength of the structure when exposing to lateral forces is essential. Also, the high stress at the connection of the beam to the column may cause a sudden failure in the region before reaching the required ductility. The use of Reduced Beam Section connection (RBS connection) by focusing stress in a region away from beam to column connection is a suitable solution to the problem. Because of the fact that RBS connections are usually used in moment frames and not tested in tall buildings with braced tube frames, they should be investigated. Therefore, in this research, three tall buildings in height ranges of 20, 25 and 30 floors were modeled and designed by SAP2000 software, and then a frame in each building was modeled in PERFORM-3D software under two RBS-free system and RBS-based system. Nonlinear time history dynamic analysis is used for each frame under Manjil, Tabas and Northridge excitations. The results of the Comparison between RBS-free and RBS-based systems show that the RBS connections increased the absorbed energy level by reducing the stiffness and increasing the ductility in the beams and structural system. Also, by increasing the involvement of the beams in absorbing energy, the columns and braces absorb less energy.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Collapse Initiation and Mechanisms for a Generic Multi-storey Steel Frame Subjected to Uniform and Travelling Fires

  • Rackauskaite, Egle;Kotsovinos, Panagiotis;Lange, David;Rein, Guillermo
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.265-283
    • /
    • 2021
  • To ensure that fire induced collapse of a building is prevented it is important to understand the sequence of events that can lead to this event. In this paper, the initiation of collapse mechanisms of generic a multi-storey steel frame subjected to vertical and horizontal travelling fires are analysed computationally by tracking the formation of plastic hinges in the frame and generation of fire induced loads. Both uniform and travelling fires are considered. In total 58 different cases are analysed using finite element software LS-DYNA. For the frame examined with a simple and generic structural arrangement and higher applied fire protection to the columns, the results indicate that collapse mechanisms for singe floor and multiple floor fires can be each split into two main groups. For single floor fires (taking place in the upper floors of the frame (Group S1)), collapse is initiated by the pull-in of external columns when heated beams in end bays go into catenary action. For single floor fires occurring on the lower floors(Group S2), failure is initiated (i.e. ultimate strain of the material is exceeded) after the local beam collapse. Failure in both groups for single floor fires is governed by the generation of high loads due to restrained thermal expansion and the loss of material strength. For multiple floor fires with a low number of fire floors (1 to 3) - Group M1, failure is dominated by the loss of material strength and collapse is mainly initiated by the pull-in of external columns. For the cases with a larger number of fire floors (5 to 10) - Group M2, failure is dominated by thermal expansion and collapse is mainly initiated by swaying of the frame to the side of fire origin. The results show that for the investigated frame initiation of collapse mechanisms are affected by the fire type, the number of fire floors, and the location of the fire floor. The findings of this study could be of use to designers of buildings when developing fire protection strategies for steel framed buildings where the potential for a multifloor fire exists.

선형구조해석을 통한 노후된 학교시설 내진성능평가 (Seismic Performance Evaluation of An Old School Building Through Linear Analysis)

  • 이도형;김태완;김승래;추유림;김현식
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

영암사지(靈巖寺址) 금당의 목조 가구구조(架構構造) 복원에 관한 연구 (A Research on the Reconstruction of Wooden Frame Structure of Kumdang in Yongamsaji)

  • 윤재신
    • 건축역사연구
    • /
    • 제19권5호
    • /
    • pp.25-47
    • /
    • 2010
  • The purpose of this study is to reconstruct the wooden frame structure of Buddhist temple, Kumdang in Youngamsaji which assumed to be built in the 9th century of Unified Silla Dynasty. The remaining site of Kumdang in Youngamsaji is investigated thoroughly with a particular attention to bay size and column distribution. The five ancient Buddhist temples which were built in the same period also have the same frame type as Youngamsaji Kumdang. These five ancient Buddhist temples and Kumdang in Youngamsaji are meticulously investigated in terms of their bay sizes and measuring modules. The framework schema is devised as a conceptual tool to conjecture wooden frame structures of Buddhist temple. A theoretical differentiation between frame type and frame structure is attempted to formulated a wooden frame structure as a stepping-stone for the reconstruction of traditional wooden building. The wooden frame structure of 9C Kumdang in Youngamsaji mainly follows the oldest Korean wooden pavilion, Muryangsujeon in Busuk temple, with a hip and gable roof. The wooden frame structure of 9C Kumdang in Youngamsaji is reconstructed through 3D computer modeling to such an extent that every wooden components of the structure can be 3D printed. The reconstruction also takes reference from the Cai-Fen system in Yingzao Fashi.

Analysis for foundation moments in space frame-shear wall-nonlinear soil system

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1369-1389
    • /
    • 2016
  • The soil-structure interaction effect significantly influences the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC shear wall building frame having isolated column footings and founded on deformable soil is presented. The nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of shear wall causes significant decrease in bending moments in most of the footings but the interaction effect causes restoration of the bending moments to a great extent. A comparison is made between linear and nonlinear analyses to draw some important conclusions.