• Title/Summary/Keyword: frame analysis

Search Result 4,602, Processing Time 0.032 seconds

Pseudo plastic zone analysis of steel frame structures comprising non-compact sections

  • Avery, P.;Mahendran, M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.371-392
    • /
    • 2000
  • Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Modal Parameter Identification of a Generator Stator Frame for Fossil Power Plants (화력 발전용 발전기 고정자 프레임의 모드매개변수 규명)

  • 김철홍;류석주;박종포
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.570-576
    • /
    • 1999
  • This paper presents numerical and experimental results of modal parameter identification in a generator stator frame for 500 MW fossil power plants. A commercial finite element analysis S/W was employed for modal analysis. The generator is excited by alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, due to magnetic field and electric current in windings. It is necessary to verify that the stator frame has adequate frequency margin from the excitation frequency to avoid possible resonance when operating. Thus, frequency margin required for the stator frame is established using the numerical and experimental results. The results show that the stator frame meets the frequency-margin requirements. Also, results of modal analysis for design modification in order to reduce weights of the stator frame without deteriorating vibration characteristics are presented.

  • PDF

Vibration reduction of military vehicle frame with using structural dynamic characteristics analysis (구조 동특성 분석을 통한 군용 차량 프레임 진동 저감)

  • Lee, Sang-Jeong;Park, Jong-Beom;Park, No-Cheol;Lee, Jong-Hak;Kim, Han-Shang;Jeong, Eui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.281-284
    • /
    • 2014
  • Unlike ordinary vehicle chassis frame, chassis frame of military vehicle is long and that is operated in harsh driving environment in middle of war. Thus, because large dynamic loads is acting on the frame, it is important to secure the durability of the frame based on the structural dynamic characteristic analysis. The purpose of the study is that the chassis frame is optimized to secure durability of the chassis frame of the military vehicle according to the structural dynamic characteristic analysis. Also, structure optimization are performed using parametric optimization and topology optimization methods.

  • PDF

Statistical analysis for RMSE of 3D space calibration using the DLT (DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석)

  • Lee, Hyun-Seob;Kim, Ky-Hyeung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

A Study on Evaluation of Structural Integrity and Fatigue Analysis for the Bogie Frame of Monorail (모노레일 대차프레임에 대한 구조 안전성 및 피로강도 평가에 관한 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Lee, Kwang-Seop;Lee, Eun-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.609-614
    • /
    • 2010
  • In this paper, the structural integrity and fatigue strength for the bogie frame of Monorail being developed in domestic was evaluated. Presently, the standard of evaluation for the bogie frame of monorail was not regulated. Therefore, the evaluation of the structural integrity and fatigue strength for the bogie frame was performed on the basis of the UIC 615-4 standard. The structural integrity of the designed bogie frame was evaluated by displacement and Von-Mises stress under each load conditions. And the fatigue strength was evaluated by combined main in-service load conditions specified at UIC 615-4 standard and it was compared with result of fatigue analysis using winLIFE v3.1 with the function of batch processing. The results shows that the structural integrity and fatigue strength of the designed bogie frame was satisfied, and the fatigue analysis using batch processing was more effective than conventional fatigue analysis using combined load conditions.

  • PDF

The Fatigue life evaluation and load history measurement for Bogie frame of locomotive (디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가)

  • Seo, Jung-Won;Kwon, Suck-Jin;Ham, Young-Sam;Kwon, Sung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF

A Study on the Fatigue Analysis of Bogie Frame under Multiaxial Loading (다축하중을 받는 대차프레임의 피로해석에 관한 연구)

  • 이상록;이학주;한승우;김경식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.330-337
    • /
    • 1998
  • Bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the multiaxial loading condition induced in real operation make it difficult to design the bogie frame against the fatigue. In this study, multiaxial fatigue criteria were reviewed. Stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 615-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface model ling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

Parametric Analysis for Structural Stiffness Enhancement of Motorcycle Frame (모터사이클 프레임의 구조강성 강화를 위한 설계변수해석)

  • Lee, Yongwoo;Ha, Sungyong;Kwon, Jongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.612-617
    • /
    • 2016
  • A motorcycle frame is a structure that endures the load and retains durability under various driving environments. A motorcycle has been developed with a diverse utility range, and its design has always been expanded to the newly created concept based on advanced engineering technologies. In this study, a compact motorcycle frame is considered to perform parametric studies that can enhance the stiffness of a frame with computational simulation. Finite element analysis is used to compare the deformation and stiffness of a base model and four case-models with three design-change-parameters. The parametric studies are analyzed to provide available methods that can be expected in the industrial fields of engineering design for a motorcycle frame.

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.