• Title/Summary/Keyword: frame analysis

Search Result 4,570, Processing Time 0.03 seconds

A study on the Structural Analysis and Loading Test of Bogie Frame (대차틀의 구조해석 및 하중시험에 관한 연구)

  • Kim Won-kyung;Yoon Sung-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.566-572
    • /
    • 2005
  • This paper describes the results of structural analysis and loading test of a bogie frame. The purpose of the analysis and test is to evaluate the safety and functionality of the bogie frame under maximum load. The bogie system consist of the bogie frame, suspensions, wheel-sets, a brake system and a transmission system. Of these components, the bogie frame is the major components subjected to the vehicle and passenger loads. The evaluation method used the JIS E 4207 specifications throughout the FEM analysis and static load test. The test results have shown the bogie frame to be safe and stable under design load conditions.

A Study on the Development of Sub-frame Designe Using Tailor Welded Blanks (Tailor Welded Blanks를 이용한 승용차용 Sub-frame의 설계기법 연구)

  • Jeon, Byung-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.22-30
    • /
    • 2000
  • The sub-frame of passenger car begins to be used widely for the safety of passengers. Conventional design of the sub-frame comprises 22parts, and it requires quite complicated production processes. In this papers, the sub-frame is designed with TWB(Tailor Welded Blanks) to improve stiffness, to reduce weight and to simplify the manufacturing process. To design the proper structure, structural analysis and crash analysis are executed about the conventional design and TWB applied design. A prototype TWB applied sub-frame is manufactured using mash-seam welded TB(Tailored Blanks). Comparing with the conventional sub-frame, the TWB applied sub-frame has 30% weight reduction and 17% increasement of structural stiffness in average.

  • PDF

Optimal Design of Automotive Seat Back Frame Using Finite Element Analysis (유한요소해석을 이용한 차량용 시트 백 프레임의 최적설계)

  • Shin, Hyeonho;Kang, Hee Yong;Yang, Sung Mo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.57-62
    • /
    • 2019
  • The seat back frame of the vehicle is subjected to load on the passenger behavior. Because of steel material, it is necessary to optimize the frame considering lightweight and safety. In this paper, finite element analysis is used for the optimal design of the seat back frame. First, a lightweight material is applied to reduce the weight of the seat back frame. Secondly, the design position of the pipe part fastened in the seat back frame was selected by considering the strength against the load generated by the occupant. Third, the shape of the side frame was derived by performing the phase optimization analysis for the AFT load condition. And we have compared the initial model with the optimal model to verify the light weighting and safety. As a result, the optimal design model of the seat back frame satisfying the weight reduction and safety has been proposed.

Structure Analysis of Secondary Bogie Frame for Electrical Multiple Unit (전동차 부수대차의 구조해석 연구)

  • Yoon S.C.;Kwon S.T.;Kim W.K.;Chang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1402-1405
    • /
    • 2005
  • This paper describes the result of structure analysis of secondary bogie frame. The purpose of the analysis is to evaluate an safety which secondary bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Secondary bogie system consist of bogie frame, suspensions, wheel-sets, and brake system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis. The analysis results have been very safety and stable for design load conditions.

  • PDF

The Finite Element Analysis of Car Seat Frame According to The FMVSS Strength Test (FMVSS 강도테스트에 다른 자동차 시트프레임의 유한요소해석)

  • 이호용;임중연;범형택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.241-247
    • /
    • 1999
  • This study presents the structural analysis of car a seat frame by the finite element method. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Three dimensional modeling technique is applied to the components of the seat frame. The shell, solid , gap and rigid elements are employed to model the car seat frame assembly. Numerical results show that the recliner and kunckle plate are identified as the possible weak part of frame, and the results are well consistent with the experimental static load test. The current analysis model can provide useful informations to design a new car seat and can reduce the overall design cost and time.

  • PDF

Global Behavior Analysis of Frame Structures with Local Cracks (국부적 균열을 지닌 프레임 구조체의 전체적인 거동 해석)

  • Kim, Dong-Jo;Kim, Se-Jin;Kim, Hyo-Jin;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.67-70
    • /
    • 2008
  • This study is to analyzes the global behavior of frame structures with local cracks in structural members by frame analysis, using the stiffness matrix of cracked frame element. This local compliance is utilized to derive the stiffness matrix of the cracked frame element and the effects of interaction among multiple cracks are also examined. The proposed technique is applied to frame structures with local cracks. Analysis results confirm the possibility of quantitative analysis of a structure damaged with local cracks and the feasibility of the technique as a tool for analyzing the global behavior of frame structures, reflecting effects of local cracks.

  • PDF

Design of the Stiffened Punch for Stamping of Lead Frame by Buckling Analysis (좌굴해석을 이용한 리드프레임 타발용 펀치의 보강설계)

  • Ko, Dae-Cheol;Lee, In-Soo;Ahn, Byung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.68-75
    • /
    • 2006
  • The lead frame manufactured by stamping process plays an important role in connecting semiconductor to PCB board. As a result of the miniaturization of semiconductor, its corresponding lead frame punch has been narrow. In case of the punch with high slenderness ratio such as lead frame punch, the punch can be broken suddenly due to buckling. To prevent the fracture of lead frame punch, some manufacturers have experientially attached stiffeners to weak parts of punch. The purpose of this study, therefore, is to suggest the guideline far design of stiffened punch. The optimal position and the number of stiffeners to be attached to punch are investigated by elastic buckling analysis. The elastic buckling analysis consists of the eigenvalue buckling analysis and nonlinear buckling analysis. The critical buckling load of elastic buckling analysis is compared with that of buckling test. Finally, the guideline far attaching stiffeners is suggested through analysis of cross section of lead frame punch such as moment of inertia and eccentricity.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

A Structural Analysis of C-Frame Press (C-Frame Press의 구조해석)

  • 박현기;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.257-260
    • /
    • 1997
  • The high precision of the products manufatured by press forming requires the high stiffness of press machines. In this study, the C-frame type press is analyzed to provide the basic idea on the C-frame press design, especially on the frame design. The finite element method is applied for the analysis and the isotropic propertics of the frame material is also considered. The results are summarized in terms of stresses and displacement distributions. Also, the openback angle of the presses is compared with two different models. The CS-150 and ECS-150 models, which are presses model having 150 ton frame capacity relatively and produced by SSangYong precision Co. LTD, are applied for the analysis.

  • PDF